Изменения

Перейти к: навигация, поиск

Разложение рациональной функции в ряд

284 байта убрано, 23:21, 2 июня 2017
Примеры
===Примеры===
#Разложить в ряд функцию <tex> G(z)=\dfrac{8+4z}{1-z-z^2+z^3}.</tex>#:Разложим знаменатель функции на множители: <center><tex> 1-z-z^2+z^3=(1+z)(1-z)^2,</tex></center>, #:тогда <center><tex>G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\dfrac{8+4z}{(1+z)(1-z)^2}.</tex></center>#:Представим функцию на сумму двух дробей, причем у первой в числителе будет полином степени <tex>0</tex>, а у второй степени <tex>1</tex>:#:<center><tex>G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2},</tex></center>#:, где <tex>A, B</tex> и <tex>C</tex> — некоторые константы. #:Для того, чтобы найти эти константы, нужно сложить дроби:#:<center><tex>\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2}=\dfrac{A(1-z)^2+(Bz+C)(1+z)}{(1+z)(1-z)^2}=\dfrac{(A+B)z^2+(B+C-2A)z+(A+C)}{(1+z)(1-z)^2}=\dfrac{8+4z}{(1+z)(1-z)^2}.</tex></center>
#:Из последнего равенства, сравниваем коэффициенты при соответствующих степенях в числителе<br>
#:<tex>A+B=0</tex> - это коэффициент при <tex>z^2</tex>,<br>
#:<tex>B=-1</tex>,<br>
#:<tex>C=7</tex>.
#:Получаем:#:<center><tex>\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2} =\dfrac{1}{1+z}+\dfrac{-z+7}{(1-z)^2}=\dfrac{1}{1+z}+\dfrac{7}{(1-z)^2}-\dfrac{z}{(1-z)^2}.</tex></center>
#:Эти дроби разложим в ряд, пользуясь таблицей производящих функций и формулами преобразования:
#:<center><tex>\dfrac{1}{1+z}=\sum_{n=0}^\infty (-1)^n z^n </tex></center>#:<center><tex>\dfrac{7}{(1-z)^2}=\sum_{n=0}^\infty 7(n+1) z^n </tex></center>#:<center><tex>\dfrac{z}{(1-z)^2}=\sum_{n=0}^\infty n z^n .</tex></center>#:Тогда#:<center><tex> G(z)=\sum_{n=0}^\infty (7(n+1)-n+(-1)^n)z^n=\sum_{n=0}^\infty (6n+7+(-1)^n)z^n</tex></center>#:Или #:<center>или <tex>[z^n]G(z) = 6n+7+(-1)^n, \qquad n \geqslant 0.</tex></center>.
#Разложить в ряд рациональную функцию <tex>G(z)=\dfrac{8-46z+89z^2-59z^3}{1-8z+23z^2-28z^3+12z^4}.</tex>
#:Разбив знаменатель на множители, получаем:#:<center><tex>\dfrac{8-46z+89z^2-59z^3}{1-8z+23z^2-28z^3+12z^4}=\dfrac{A}{1-z}+\dfrac{Bz+C}{(1-2z)^2}+\dfrac{D}{1-3z}.</tex></center>#:Приведим Приведём все дроби к общему знаменателю:#:<center><tex>\dfrac{(-12A+3B-4D)z^3+(16A-4B+3C+8D)z^2+(-7A+B-4C-5D)z+A+C+D}{(1-z)(1-2z)^2(1-3z)}.</tex></center>
#:Решаем систему линейных уравнений:
#:<tex>-12A+3B-4D=-59</tex>
#:Решение этой системы:
#:<tex>A=4, B=3, C=−1, D=5.</tex>
#:Это означает, что#:<center><tex>G(z)= \dfrac{4}{1-z} + \dfrac{3z}{(1-2z)^2} -\dfrac{1}{(1-2z)^2} + \dfrac{5}{1-3z}.</tex></center>
#:Теперь каждую дробь можно разложить в ряд, пользуясь таблицей:
#:<center><tex>G(z) = 4\sum_{n=0}^\infty z^n + 3\sum_{n=0}^\infty n2^{n-1}z^n-\sum_{n=0}^\infty (n+1) 2^n z^n+5\sum_{n=0}^\infty 3^n z^n.</tex></center>
#:То есть
#:<center><tex>[z^n]G(z) = 5\cdot3^n + 3n2^{n-1} - (n+1)2^n+4= 5\cdot3^n+n2^{n-1}-2^n+4</tex></center>#:<center><tex>G(z) = 8+18z+49z^2+143z^3+425z^4+1267z^5+3777z^6+11259z^7+O(z^{8}).</tex></center>
==Проблема==
635
правок

Навигация