Изменения
→Теорема
2) <tex> \to </tex> 3) Ясно, что граф <tex>G</tex> - связный. Соотношение <tex>p = q + 1</tex> докажем по индукции. Утверждение очевидно для связных графов с одной и двумя вершинами. Предположим, что оно верно для графов, имеющих меньше <tex>p</tex> вершин. Если же граф <tex>G</tex> имеет <tex>p</tex> вершин, то удаление из него любого ребра делает его несвязным, в силу единственности простых цепей; более того, получаемый граф будет иметь в точности две компоненты. По предположению индукции в каждой компоненте число вершин на единицу больше числа ребер. Таким образом, общее число ребер в графе <tex>G</tex> должно равняться <tex>p-1</tex>.
3) <tex> \to </tex> 4) Предположим, что в графе <tex>G</tex> есть простой цикл длины <tex>n</tex>. Этот цикл содержит <tex>n</tex> вершин и <tex>n</tex> ребер, а для любой из <tex>p - n</tex> вершин, не принадлежащих циклу,существует инцидентное ей ребро, которое лежит на геодезической , идущей от некоторой вершины цикла. Все такие ребра попарно различны; отсюда <tex>q \ge p</tex>, т. е. пришли к противоречию.
4) <tex> \to </tex> 1) Предположим граф <tex>G</tex> имеет <tex>k</tex> компонент связности, и т. к. граф ациклический, то каждая компонента связности является деревом. Ввиду того, что 1) <tex> \to </tex> 3) <tex>q = \sum_{i = 1}^k (p_i - 1) = p - k</tex>, где <tex>p_i</tex> - количество вершин в <tex>i</tex>-й компоненте связности. Учитывая, что <tex>p = q + 1</tex>, получаем, что <tex>k = 1</tex>, т. е. <tex>G</tex> - дерево.
}}