'''Производящая функция Дирихле''' (англ. ''Dirichlet generating functions'') последовательности <tex>\{a_n\}_{n=1}^{\infty}</tex> — это формальный ряд вида:
Таблица содержит последовательности производящих функций. Первая из них — это дзета-функция Римана, состоящая из единиц. <tex>[\zeta(s)]^2</tex> является последовательностью количества делителей числа. <tex>\mu(n)</tex> — последовательность Мҷбиуса (англ. Möbius). <tex>H(n)</tex> — последоватльность факторизаций числа. <tex>\phi(n)</tex> — функция Эйлера. <tex>\lambda(s)</tex> — лямбда функция Дирихле.
Производящие функции Дирихле чаще используются в мультипликативной теории чисел, ввиду особого поведения относительно умножения.
=== Умножение ===
Если <tex>A(s)</tex> и <tex>B(s)</tex> — произодящие функции Дирихле двух последовательностей <tex>\{a_n\}_{n=1}^\infty</tex> и <tex>\{b_n\}_{n=1}^\infty</tex> соответсвенно, то <tex>A(s)B(s) = \frac{a_1b_1}{1^s} + \frac{a_1b_2 + a_2b_1}{2^s} + \frac{a_1b_3 + a_3b_1}{3^s} + \frac{a_1b_4 + a_2b_2 + a_4b_1}{4^s} + \dots = \sum\limits_{n} \frac{\sum\limits_{kl=n} {a_kb_l}}{n^s}</tex>, где внутренние суммирование ведется по всем разложением числа <tex>n</tex> в произведение двух сомножителей. Таким образом, использование производящих функций Дирихле позволяет контролировать мультипликативную структуру натуральных чисел.
=== Сложение ===
Сложение производящих функций соответствует обычному почленному сложению последовательностей.
//пример
=== Единица ===
Роль единицы при умножении производящих функций Дирихле играет функция <tex>1 = 1 ^ {-s}</tex>.
=== Обратимость ===
Любая производящая функция Дирихле <tex>A(s)</tex> с ненулевым свободным членом, <tex>a_1 \neq 0</tex>, обратима: для нее существует функция <tex>B(s)</tex>, такая что <tex>A(s)B(s) = 1</tex>
Attention!
Можно привести доказательство теоремы об обратной функции для дзета-функции Римана
== Источники информации ==
* [http://files.school-collection.edu.ru/dlrstore/d62ef84c-a780-11dc-945c-d34917fee0be/47_lando_lekcii_o_proizvodyashih_foo.pdf С.К.Ландо, Леции о производящих функциях, 2007 год]