Изменения

Перейти к: навигация, поиск

Задача о счастливых билетах

1 байт добавлено, 00:17, 15 июня 2017
Нет описания правки
__TOC__
== Общие идеи ==
Обозначим количество <tex>n</tex>-значных чисел с суммой <tex>k</tex> как <tex>D_n^k</tex> (число может содержать ведущие нули). <tex>2n</tex>-значный счастливый билет состоит из двух частей: левой (<tex>n</tex> цифр) и правой (тоже <tex>n</tex> цифр), причём в обеих частях сумма цифр одинакова. Зафиксируем <tex>x</tex> {{---}} <tex>n</tex>-значное число с суммой <tex>k</tex> в левой части (всего таких чисел <tex>D_n^k</tex>, значит это можно сделать <tex>D_n^k</tex> способами). Для него будет существовать <tex>D_n^k</tex> возможных вариантов числа в правой части, следовательно количество счастливых билетов с суммой <tex>k</tex> в одной из частей равно <tex>(D_n^k)^2</tex>. Значит общее число билетов равно <tex>L_n = \sum\limits_{k=0}^{9n} (D_{n}^{k})^2</tex>. Верхний индекс суммирования равен <tex>9n</tex>, так как максимальная сумма цифр в одной части билета равна <tex>9n</tex>. Также можно сопоставить счастливому билету <tex>a_1a_2\ldots a_n b_1b_2 \ldots b_n</tex> <tex>2n</tex>-значное число с суммой <tex>9n</tex>: <tex>a_1a_2\ldots a_n (9-b_1)(9-b_2) \ldots (9-b_n)</tex>, причем это соответствие взаимно-однозначно, значит множества счастливых билетов и <tex>2n</tex>-значных чисел с суммой <tex>9n</tex>равномощны, поэтому <tex>L_n=D_{2n}^{9n}</tex>.
== Метод динамического программирования ==
Научимся вычислять <tex>D_n^k</tex>. Положим <tex>D_0^k=\begin{cases}1,&k=0\\0,&k>0\end{cases}</tex>. При <tex>n>0</tex> количество <tex>n</tex>-значных чисел с суммой цифр <tex>k</tex> можно выразить через количество <tex>(n-1)</tex>-значных чисел, добавляя к ним <tex>n</tex>-ю цифру, которая может быть равна <tex>0, 1, \ldots, 9</tex>: <tex>D_n^k=\sum\limits_{j=0}^{9}D_{n-1}^{k-j}</tex>. Ответ {{---}} в <tex>D_{2n}^{9n}</tex>, алгоритм будет работать за <tex>O(n^2)</tex>.
64
правки

Навигация