Изменения
Нет описания правки
'''Я ЕЩЁ НЕ ДОДЕЛАЛ, ЭТО ЧЕРНОВИК!!!'''
В математике '''убывающим факториалом''' (англ. falling factorial) (иногда называется '''нисходящим факториалом''', '''постепенно убывающим факториалом''' или '''нижним факториалом''' (descending factorial, falling sequential product или lower factorial)) обозначают:
:<tex>(x)_{n}=x^{\underline{n}}=x(x-1)(x-2)\cdots(x-n+1)=\prod_{k=1}^{n}(x-(k-1))=\prod_{k=0}^{n-1}(x-k)</tex>
'''Растущий факториал''' (rising factorial) (иногда называется '''функцией Похгаммера''', '''многочленом Похгаммера''', '''восходящим факториалом''', '''постепенно растущим произведением''' или '''верхним факториалом''' (Pochhammer function, Pochhammer polynomial, ascending factorial, rising sequential product или upper factorial)) определяется следующей формулой:
:<mathtex>x^{(n)}=x^{\overline{n}}=x(x+1)(x+2)\cdots(x+n-1)=\prod_{k=1}^{n}(x+(k-1))=\prod_{k=0}^{n-1}(x+k). </mathtex>
При ''n=0'' значение принимается равным 1 (пустое произведение).
==Альтернативные формы записи==
:<tex>x^{\overline{m}}=\overbrace{x(x+1)\ldots(x+m-1)}^{m~\mathrm{factors}}\qquad\mbox{for integer }m\ge0,</tex>
:<tex>x^{\underline{m}}=\overbrace{x(x-1)\ldots(x-m+1)}^{m~\mathrm{factors}}\qquad\mbox{for integer }m\ge0;</tex>
goes back to A. Capelli (1893) and L. Toscano (1939), respectively.<ref>According to Knuth, The Art of Computer Programming, Vol. 1, 3rd ed., p. 50.</ref> Graham, Knuth and Patashnik<ref>[[Ronald L. Graham]], [[Donald E. Knuth]] and [[Oren Patashnik]] in their book ''[[Concrete Mathematics]]'' (1988), Addison-Wesley, Reading MA. {{ISBN|0-201-14236-8}}, pp. 47,48</ref> propose to pronounce these expressions as "<tex>x</tex> to the <tex>m</tex> rising" and "<tex>x</tex> to the <tex>m</tex> falling", respectively.
==Обобщения==
These coefficients satisfy a number of analogous properties to those for the [[Stirling numbers of the first kind]] as well as recurrence relations and functional equations related to the ''f-harmonic numbers'', <math>F_n^{(r)}(t) := \sum_{k \leq n} t^k / f(k)^r</math>.<ref>''[https://arxiv.org/abs/1611.04708 Combinatorial Identities for Generalized Stirling Numbers Expanding f-Factorial Functions and the f-Harmonic Numbers]'' (2016).</ref>
==ЛитератураИсточники материала==
* [http://mathworld.wolfram.com/PochhammerSymbol.html, Pochhammer Symbol]
* [https://www.scribd.com/doc/288367437/A-Compilation-of-Mathematical-Demonstrations, Elementary Proofs]