Изменения

Перейти к: навигация, поиск

Панциклический граф

793 байта добавлено, 16:42, 4 декабря 2017
Нет описания правки
Докажем методом от противного, что <tex> n </tex> {{---}} четно. Пусть <tex> n </tex> является нечетным, тогда из рассуждений выше существует вершина <tex> v_x </tex>, для которое верно, что <tex> deg(v_x) \leqslant \genfrac{}{}{}{}{n-1}{2} </tex>.
Пусть это не так, тогда <tex> \forall i, 1 \leqslant i \leqslant n : deg(i) \geqslant \genfrac{}{}{}{}{n-1}{2} + 1 = \genfrac{}{}{}{}{n+1}{2} </tex>, значит <tex> \forall j, 1 \leqslant j \leqslant n : deg(v_j) + deg(v_{j+1}) \geqslant \genfrac{}{}{}{}{n+1}{2} + \genfrac{}{}{}{}{n+1}{2} = n + 1 </tex>, то есть мы получили противоречие с тем, что <tex> deg(v_j) + deg(v_{j + 1}) \leqslant n </tex>.
Без потери общности пусть <tex> v_x = v_n </tex> Рассмотрим <tex> 2|E| = \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{(n - 1)/2} (deg(v_{2i-1}) + deg(v_{2i})) + deg(v_n) \leqslant \genfrac{}{}{}{}{n(n-1)}{2} + \genfrac{}{}{}{}{n-1}{2} < </tex> <tex> \genfrac{}{}{}{}{n^2}{2} </tex>, то есть <tex> |E| < \genfrac{}{}{}{}{n^2}{2} </tex>, но по условию <tex> |E| \geqslant n^2/4 </tex> - получили противоречие. Таким образом <tex> n </tex> является четным.Тогда верно, что <tex> 2|E| \leqslant \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{n/2} (deg(v_{2i-1}) + deg(v_{2i})) \leqslant \genfrac{}{}{}{}{n^2}{2} </tex>, а так как по условию <tex> |E| \geqslant n^2/4 </tex>, то <tex> |E| = \genfrac{}{}{}{}{n^2}{4} </tex>. Данное равенство достигается, если верно, что:
Для <tex>k</tex> таких, что <tex> j + l - 1 \leqslant k \leqslant j + l - 2 </tex> : <tex> (v_j, v_k) \in E </tex> и <tex>(v_{j+1}, v_{k-l+3}) \notin E </tex>
Для <tex>k</tex> таких, что <tex> j + 2 \leqslant k \leqslant j + l - 2 </tex> : <tex>(v_j, v_k) \in E </tex> и <tex>(v_{j+1}, v_{k-l+1}) \notin E </tex>
Пусть <tex> G </tex> не <tex> K_{n/2, n/2} </tex>, тогда
}}
Анонимный участник

Навигация