13
правок
Изменения
→Теорема о связи длины НВП и НУП
|about=
|statement=
|proof=
Докажем, что все пары <tex>(S_i, T_i)</tex> различны.
Пусть существуют такие <tex>i < j</tex> , что <tex> S_i </tex> = <tex> S_j </tex> и <tex> T_i </tex> = <tex> T_j</tex>. Если <tex>a_i < a_j</tex>, тогда <tex> a_j </tex> можно добавить к НВП, заканчивающейся на <tex> a_i </tex>, следовательно <tex>S_j \geqslant S_i + 1</tex>. Если <tex>a_i > a_j</tex>, то по аналогии <tex>T_i \geqslant T_j + 1</tex>. Противоречие! Следовательно все такие пары различны.
Заметим что <tex>1 \leqslant S_i \leqslant l, 1 \leqslant T_i \leqslant k</tex>, поэтому существуют <tex>l k</tex> различных пар <tex> (S_i, T_i) </tex>. Если <tex>l k < n</tex> тогда среди <tex> n </tex> пар найдутся две одинаковые. Такого быть не может по доказанному выше, т. е. <tex>l k \geqslant n</tex>, ч. т. д.
}}