</tex>
Заполним таблицу [[Числа Стирлинга второго рода|'''чисел Стирлинга второго рода''']], используя данную формулу.
ОчевидноЧисло Стирлинга второго рода показывает количество способов разбиения множества из <tex>n</tex> элементов на <tex>k</tex> непустых подмножеств. Если сложить все числа Стирлинга второго рода, имеющих одинаковую <tex>n</tex>, то получим количество способов разбиения множества из <tex>n</tex> элементов на непустых подмножеств, то есть <tex>n</tex>-ое число Белла.Соответственно,что сумма чисел <tex>n</tex>-столбца таблицы будет являться <tex>n-ым</tex> числом -ымчислом Белла.
{| border="1"
|-