Изменения

Перейти к: навигация, поиск

Лапы и минимальные по включению барьеры в графе

4 байта добавлено, 23:56, 16 декабря 2017
Нет описания правки
|statement = Пусть <tex>B</tex> {{---}} минимальный по включению барьер графа <tex>G</tex>, тогда каждая вершина <tex>B</tex> {{---}} центр лапы в <tex>G</tex>.
|proof = Предположим, что <tex>x\in B</tex> не является центром лапы. Тогда <tex>x</tex> смежна не более чем с двумя [[Отношение связности, компоненты связности#def2 | компонентами связности]] графа <tex>G \setminus B</tex>. <br>
Введём обозначение <tex>B' = B\setminus \{ x\}</tex>. <br>
Найдём соотношение между [[ Теорема Татта о существовании полного паросочетания#odd | <tex>\mathrm{odd}</tex> ]]<tex>(G\setminus B')\ </tex> и <tex>\mathrm{odd}(G\setminus B)\ </tex>. <br>
Для этого рассмотрим всевозможные случаи количества компонент связности в графе <tex>G \setminus B</tex>, с которыми смежна <tex>x</tex>, и посмотрим на их четности (компоненты в <tex>B</tex>, с которыми смежна <tex>x</tex>, нас не интересуют). <br>
133
правки

Навигация