Изменения

Перейти к: навигация, поиск

Графы-экспандеры

16 байт убрано, 00:45, 21 декабря 2017
м
Маргулис-Габбер-Галил
Существуют три основные стратегии создания семейств графов расширений. Первая стратегия — алгебраическая и теоретико-групповая, вторая — аналитическая, использующая аддитивную комбинаторику, и третья — комбинаторная, использующая зигзаг-произведение и связанные комбинаторные произведения.
===Маргулис-Габбер-Галил===
[[Алгебра|Алгебраическое]] конструирование, основанное на графах Кэли<ref>https://en.wikipedia.org/wiki/Cayley_graph</ref>, известно для различных вариантов экспандеров. Следующее конструирование принадлежит Маргулису и было проанализировано Габбером (Gabber) и Галилом (Galil)<ref>[Omer Reingold Undirected connectivity in log-space // Journal of the ACM. — 2008. — Т. 55, вып. 4. — DOI:10.1145/1391289.1391291]</ref>. Для любого натурального <tex>n</tex> строим граф, <tex>G_{n}</tex> со множеством вершин <tex>\mathbb Z _{n}\times \mathbb {Z} _{n}</tex>, где <tex>\mathbb {Z} _{n}=\mathbb Z /n \mathbb Z</tex> . Для любой вершины <tex>(x,y)\in \mathbb {Z} _{n}\times \mathbb {Z} _{n}</tex>, её восемь соседей будут
<tex>(x \pm 2y,y), (x \pm (2y+1),y), (x,y \pm 2x), (x,y \pm (2x+1)).</tex>
92
правки

Навигация