Изменения

Перейти к: навигация, поиск

Задача о динамической связности

7656 байт убрано, 00:20, 27 декабря 2017
Нет описания правки
В графе могут быть кратные рёбра и петли.
}}
погодь
== Решение упрощённой задачи ==
== Время работы ==
Каждое из <tex>O(m)</tex> рёбер записывается в <tex>O(\log m)</tex> вершин дерева отрезков. Поэтому операций <tex>\mathrm{union}</tex> в СНМ будет <tex>O(m \log m)</tex>. Каждая выполняется за <tex>O(\log n)</tex> (СНМ с ранговой эвристикой). Откаты не влияют на время работы.
 
Можно считать, что <tex>n = O(\log m)</tex>, так как в запросах используется не более <tex>2m</tex> вершин.
 
Время работы: <tex>O(m \log m \log n) = O(m \log^2 m)</tex>.
== Реализация на C++ ==
'''#include''' <bits/stdc++.h>
'''using''' '''namespace''' std;
'''typedef''' pair < '''int''' , '''int''' > ipair;
'''const''' '''int''' N = 100321;
<font color="green">// СНМ</font>
'''int''' dsuP[N], dsuR[N];
<font color="green">// В этот массив записываются все изменения СНМ, чтобы их можно откатить</font>
<font color="green">// При изменении какого-то значения в СНМ в hist записывается пара < указатель, старое значение ></font>
vector < pair < '''int'''*, '''int''' > > hist;
<font color="green">// Для элемента из СНМ возвращает корень дерева, в котором он находится</font>
'''int''' dsuRoot('''int''' v)
{
'''while''' (dsuP[v] != -1)
v = dsuP[v];
'''return''' v;
}
<font color="green">// Объединяет два множества. Используется ранговая эвристика.</font>
<font color="green">// При любом изменении содержимого массивов dsuP и dsuR</font>
<font color="green">// в hist записывается адрес и старое значение</font>
'''void''' dsuMerge('''int''' a, '''int''' b)
{
a = dsuRoot(a);
b = dsuRoot(b);
'''if''' (a == b)
'''return''';
'''if''' (dsuR[a] > dsuR[b])
{
hist.emplace_back(&dsuP[b], dsuP[b]);
dsuP[b] = a;
} '''else''' '''if''' (dsuR[a] < dsuR[b])
{
hist.emplace_back(&dsuP[a], dsuP[a]);
dsuP[a] = b;
} '''else'''
{
hist.emplace_back(&dsuP[a], dsuP[a]);
hist.emplace_back(&dsuR[b], dsuR[b]);
dsuP[a] = b;
++dsuR[b];
}
}
'''struct''' Query
{
'''int''' t, u, v;
bool answer;
};
'''int''' n, m;
Query q[N];
<font color="green">// Дерево отрезков, в каждой вершине которого хранится список рёбер</font>
vector < ipair > t[N*4];
<font color="green">// Эта функция добавляет ребро на отрезок</font>
<font color="green">// [l r] - отрезок, на который добавляется ребро</font>
<font color="green">// uv - ребро, c - текущая вершина дерева отрезков,</font>
<font color="green">// [cl cr] - отрезок текущей вершины дерева отрезков</font>
'''void''' addEdge('''int''' l, '''int''' r, ipair uv, '''int''' c, '''int''' cl, '''int''' cr)
{
'''if''' (l > cr || r < cl)
'''return''';
'''if''' (l <= cl && cr <= r)
{
t[c].push_back(uv);
'''return''';
}
'''int''' mid = (cl + cr) / 2;
addEdge(l, r, uv, c*2+1, cl, mid);
addEdge(l, r, uv, c*2+2, mid+1, cr);
}
<font color="green">// Обход дерева отрезков в глубину</font>
'''void''' go('''int''' c, '''int''' cl, '''int''' cr)
{
'''int''' startSize = hist.size();
<font color="green">// Добавляем рёбра при входе в вершину</font>
'''for''' (ipair uv : t[c])
dsuMerge(uv.first, uv.second);
'''if''' (cl == cr)
{
<font color="green">// Если эта вершина - лист, то отвечаем на запрос</font>
'''if''' (q[cl].t == 3)
q[cl].answer = (dsuRoot(q[cl].u) == dsuRoot(q[cl].v));
} '''else''' {
'''int''' mid = (cl + cr) / 2;
go(c*2+1, cl, mid);
go(c*2+2, mid+1, cr);
}
<font color="green">// Откатываем изменения СНМ</font>
'''while''' (('''int''')hist.size() > startSize)
{
*hist.back().first = hist.back().second;
hist.pop_back();
}
}
'''int''' main()
{
ios::sync_with_stdio('''false''');
<font color="green">// Формат входных данных:</font>
<font color="green">// n и m, затем в m строках запросы: по три числа t, u, v</font>
<font color="green">// t - тип (1 - добавить ребро, 2 - удалить, 3 - принадлежат ли одной компоненте)</font>
<font color="green">// Нумерация вершин с нуля</font>
cin >> n >> m;
'''for''' ('''int''' i = 0; i < n; ++i) <font color="green">// Инициализация СНМ</font>
dsuP[i] = -1;
<font color="green">// В этом массиве для каждого ещё не удалённого ребра хранится</font>
<font color="green">// на каком запросе оно было создано</font>
set < pair < ipair, '''int''' > > edges;
'''for''' ('''int''' i = 0; i < m; ++i)
{
cin >> q[i].t >> q[i].u >> q[i].v;
<font color="green">// Поскольку рёбра неориентированные, u v должно означать то же самое, что и v u</font>
'''if''' (q[i].u > q[i].v) swap(q[i].u, q[i].v);
<font color="green">// При добавлении ребра кладём его в set</font>
'''if''' (q[i].t == 1)
edges.emplace(ipair(q[i].u, q[i].v), i);
<font color="green">// При удалении ребра берём из set время его добавления - так мы узнаём отрезок заросов,</font>
<font color="green">// на котором оно существует. Если есть несколько одинаковых рёбер, можно брать любое.</font>
'''else''' '''if''' (q[i].t == 2)
{
'''auto''' iter = edges.lower_bound(make_pair(ipair(q[i].u, q[i].v), 0));
addEdge(iter->second, i, iter->first, 0, 0, m - 1);
edges.erase(iter);
}
}
<font color="green">// Обрабатываем рёбра, которые не были удалены</font>
'''for''' ('''auto''' e : edges)
addEdge(e.second, m - 1, e.first, 0, 0, m - 1);
<font color="green">// Запускаем dfs по дереву отрезков</font>
go(0, 0, m - 1);
<font color="green">// Выводим ответ.</font>
<font color="green">// При обходе дерева отрезков запросы обрабатываются в том же порядке, в котором они даны,</font>
<font color="green">// поэтому ответ можно выводить прямо в go без заполнения answer</font>
'''for''' ('''int''' i = 0; i < m; ++i)
'''if''' (q[i].t == 3)
{
'''if''' (q[i].answer)
cout << "YES\n";
'''else'''
cout << "NO\n";
}
'''return''' 0;
}
 
== См. также ==
* [[СНМ (реализация с помощью леса корневых деревьев)|Система непересекающихся множеств]]
Анонимный участник

Навигация