Изменения

Перейти к: навигация, поиск
м
Орфография
{{Утверждение
|statement=
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{m}\}</tex> {{---}} количество объектов веса от <tex dpi="130">1</tex> до <tex dpi="130">m</tex>. Мы считаем , что нет объектов веса <tex dpi="130"">0</tex>, так как в противном случае существует бесконечное количество последовательностей любого веса. Тогда, '''количество последовательностей''' веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">S_{n}=\sum_{i=1}^{n} w_{i} S_{n-i}</tex>. Причем <tex dpi="150"">S_{0} = 1</tex>, так как есть единственный способ составить пустую последовательность.
|proof=Докажем по индукции.
'''База <tex dpi="130"">n = 1</tex>'''.
:<tex dpi="130"">S_{1}=w_{1} S_{0}=w_{1}</tex>, что верно , так как единственный способ составить последовательность веса <tex dpi="130"">1</tex> {{---}} это взять любой элемент веса <tex dpi="130"">1</tex>.
'''Переход'''.
:Пусть для <tex dpi="130"">j < n</tex> верно. Докажем для <tex dpi="130"">n</tex>. Возьмем произвольный элемент из <tex dpi="130"">A</tex> веса <tex dpi="130"">i \leqslant n</tex>, и допишем его к последовательности элементов веса <tex dpi="130"">n-i</tex>. Образуется новая последовательность веса <tex dpi="130"">n</tex>. Причем никакая последовательность не будет учтена дважды, так как предже прежде не было последовательнотей последовательностей веса <tex dpi="130"">n</tex> и ни к какой последовательности меньшего веса мы не добавляем один и тот де же элемент дважды.l}}
===Подсчет битовых векторов длины <tex dpi="150">n</tex>===
===Подсчет подвешенных непомеченных деревьев с порядком на детях===
Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">S=Seq(A)</tex> {{---}} множество всех последовательностей из данных деревьев. <tex dpi="130">S_{n}</tex> {{---}} количество последовательностей с суммарным количество вершин <tex dpi="130">n</tex>. Чтобы получить дерево из <tex dpi="130">n</tex> вершин , достаточно взять <tex dpi="130">1</tex> вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда:
:<tex dpi="150">T_{n}=S_{n-1}</tex>.
:<tex dpi="150">S_{n}=\sum_{i=1}^{n} T_{i} S_{n-i}=\sum_{i=1}^{n} S_{i-1} S_{n-i}=\sum_{i=0}^{n-1} S_{i} S_{n-i-1}=C_{n}</tex>, где <tex dpi="150">C_{n}</tex> {{---}} <tex dpi="150">n</tex>-ое [[Числа Каталана|число Каталана]].
{{Утверждение
|statement=
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">P=PSet(A)</tex> {{---}} множество всех множеств , составленных из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>. Тогда '''количество множеств''' суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">P_{n}=p_{n, n}</tex>, где <tex dpi="150">p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}}{i} p_{n-ik, k-1}</tex> {{---}} количество таких множеств, что они которые содержат объекты, вес которых не больше чем <tex dpi="130">k</tex>.
}}
===Количество разбиений на слагаемые===
Пусть <tex dpi="130">A=\mathbb{N}</tex>, <tex dpi="130">P=PSet(A)</tex> {{---}} множество всех [[Нахождение количества разбиений числа на слагаемые|разбиений на слагаемые]], <tex dpi="130">W=\{1 \ldots 1\}</tex>, <tex dpi="130">w_{0} = 1</tex>. Тогда,
:<tex dpi="150">P_{n}=p_{n, n}</tex>, где <tex tex dpi="150">p_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} p_{n-ik, k-1} = p_{n, k-1} + p_{n - k, k}</tex>, что, как не сложно несложно заметить, соответствует формуле, полученной методом [[Нахождение количества разбиений числа на слагаемые#Алгоритм за O(N^2)|динамического программирования]].
{{Утверждение
|statement=
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">M=MSet(A)</tex> {{---}} множество всех мультимножеств <ref>[[wikipedia:Multiset|Wikipedia {{---}} Мультимножества]]</ref> из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>. Тогда '''количество мультимножеств''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">M_{n}=m_{n, n}</tex>, где <tex dpi="150">m_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}+i-1}{i} m_{n-ik, k-1}</tex> {{---}} количество таких мультимножеств, что они которые содержат объекты, вес которых не больше чем <tex dpi="130">k</tex>.
}}
===Подсчет подвешенных непомеченных деревьев без порядка на детях===
Пусть <tex dpi="130">T_{n}</tex> {{---}} количество таких деревьев с <tex dpi="130">n</tex> вершинами, <tex dpi="130">T_{0} = 1</tex>. <tex dpi="130">F=MSet(T)</tex> {{---}} множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. <tex dpi="130">F_{n}=f_{n,n}</tex> {{---}} количество лесов с суммарным количество вершин <tex dpi="130">n</tex>. <tex dpi="130">f_{n, k}</tex> {{---}} количество таких лесов из <tex dpi="130">n</tex> вершин, что деревья в них содержат не более чем <tex dpi="130">k</tex> вершин. Чтобы получить дерево из <tex dpi="130">n</tex> вершин , достаточно взять <tex dpi="130">1</tex> вершину и подвесить к ней лес деревьев с суммарным количеством вершин <tex dpi="130">n-1</tex>. Тогда:
:<tex dpi="150">T_{n}=F_{n-1}</tex>.
:<tex dpi="150">F_{n}=f_{n, n}</tex>.
===Задача об ожерельях===
Решим данным способом [[Задача об ожерельях|задачу об ожерельях]]. Пусть необходимый вес <tex dpi="130">n</tex> {{---}} это количество бусинок, а <tex dpi="130">k</tex> {{---}} количество цветов. При чем Причем каждая бусинка весит <tex dpi="130">1</tex>. То есть <tex dpi="130">W=\{k, 0 \ldots 0\}</tex>.
<tex dpi="130">C_{n}=\sum_{s=1}^{n}c_{n,s}=c_{n,n}</tex> так как невозможно набрать вес <tex dpi="130">n</tex> менее , чем <tex dpi="130">n</tex> бусинами при весе бусин <tex dpi="130">1</tex>.
<tex dpi="130">c_{n,n}=\sum_{i=0}^{n-1}\dfrac{|St(\vec{i})|}{n}=\dfrac{1}{n}\sum_{i=0}^{s-1}|St(\vec{i})|=\dfrac{1}{n}\sum_{i=0}^{s-1}b_{\mathrm{gcd}(n,i),\mathrm{gcd}(n,i)}</tex>. Поскольку все бусины имеют одинаковый вес <tex dpi="130">1</tex>, то <tex dpi="130">b_{n,k} \neq 0</tex>
286
правок

Навигация