Изменения

Перейти к: навигация, поиск

Лемма Бёрнсайда и Теорема Пойа

4 байта добавлено, 17:51, 7 февраля 2018
Теорема Пойа
|statement= <math>C = \dfrac{1}{|G|}\sum\limits_{g \in G} l^{P(g)}</math> ,где <tex>C</tex> {{---}} кол-во различных классов эквивалентности, <tex>P(g)</tex> {{---}} кол-во циклов в перестановке <tex>g</tex>, <tex>l</tex> {{---}} кол-во различных состояний одного элемента.
|proof=Для доказательства этой теоремы достаточно установить следующее равенство
<texmath>|St(g)| = l^{P(g)}</texmath>
Рассмотрим некоторую перестановку <tex>g</tex> и некоторый элемент <tex>f</tex>. Под действием перестановки <tex>g</tex> элементы <tex>f</tex> передвигаются, как известно, по циклам перестановки. Заметим, что так как в результате должно получаться <tex>fg = f</tex>, то внутри каждого цикла перестановки должны находиться одинаковые элементы <tex>f</tex>. В то же время, для разных циклов никакой связи между значениями элементов не возникает. Таким образом, для каждого цикла перестановки <tex>g</tex> мы выбираем по одному значению, и, тем самым, мы получим все представления <tex>f</tex>, инвариантные относительно этой перестановки, т.е.:
<texmath>|St(g)| = l^{P(g)}</texmath>
}}

Навигация