286
правок
Изменения
м
Fix ticket
#Соответственно, на '''первом графике''' изображена '''положительная корреляция''', когда увеличение <tex>Y</tex> ведет к постепенному увеличению <tex>X</tex>.
#'''Второй график''' отображает '''отрицательную корреляцию''', когда увеличение <tex>X</tex> воздействует на постепенное уменьшение <tex>Y</tex>.
#'''Третий график''' показывает, что <tex>X</tex> и <tex>Y</tex> связаны слабо, их распределение не зависит от изменения друг друга, поэтому корреляция между ними будет '''равна <tex>0</tex>'''.
=== Определение корреляции по таблице ===
Рассмотрим <tex>2 </tex> случайные величины: курс акций нефтедобывающей компании (<tex>X</tex>) и цены на нефть (<tex>Y</tex>).
{| class="wikitable"
|-
! X
| <tex>2003,6 </tex> || <tex>2013,2 </tex> || <tex>2007,6 </tex> || <tex>2007,4 </tex> || <tex>2039,9 </tex> || <tex>2025 </tex> || <tex>2007 </tex> || <tex>2017 </tex> || <tex>2015,6 </tex> || <tex>2011</tex>
|-
! Y
| <tex>108,4 </tex> || <tex>107,96 </tex> || <tex>108,88 </tex> || <tex>110,44 </tex> || <tex>110,2 </tex> || <tex>108,97 </tex> || <tex>109,15 </tex> || <tex>108,8 </tex> || <tex>111,2 </tex> || <tex>110,23</tex>
|-
|}
<tex>D(Y) = 0,959661</tex>
Используя формулу, <tex>\mathrm{Corr}(\eta,\xi)=\dfrac{E(\xi \eta) - E(\xi)E(\eta)}{{\sigma_{\eta} \sigma_{\xi}}}</tex> определяем, что корреляция между величинами <tex>X</tex> и <tex>Y</tex> составляет <tex>0,240935496</tex>, т.е. то есть <tex>24\%</tex>.
== См. также ==