Изменения

Перейти к: навигация, поиск

Исчисление предикатов

5317 байт убрано, 22:22, 10 марта 2018
Интерпретация булевых формул с кванторами как игр для двух игроков
Исчисление предикатов полно.
|proof=Без доказательства.
}}
===Интерпретация булевых формул с кванторами как игр для двух игроков===
 
'''Примечание:''' данного материала не будет на экзамене. Это перенесенный конспект из [[Теория формальных языков|Теории формальных языков]].
 
Во многих теоремах присутствуют утверждения с кванторами «для всех» и «существует». От того, в каком порядке кванторы входят в утверждение, зависит его смысл. Часто оказывается полезным представлять утверждения с кванторами как «игру», в которой участвуют два игрока — «для всех» и «существует». Есть утверждение <tex>\exists x_1 \forall x_2 \exists x_3 \dots Q x_n \Psi(x_1,\dots ,x_n)</tex>. Игроки поочередно выбирают значения параметров. Каждый игрок выбирает значение в зависимости от предыдущих ходов. Цель игрока «существует» делать такие ходы, чтобы утверждение <tex>\exists x_1 \forall x_2 \exists x_3 \dots Q x_n \Psi(x_1,\dots ,x_n)</tex> получилось истинным. А цель игрока «для всех» делать такие ходы, чтобы итоговое выражение получилась ложным.
 
{{Теорема
|statement=
Дано утверждение: <tex>P_1 = P_1(Q_1, \ldots, Q_n, \Psi(x_1,\dots ,x_n)) = Q_1 x_1 Q_2 x_2 \ldots Q_n x_n \Psi(x_1,\dots ,x_n)</tex>, где <tex>\{Q_i\}_{i=1}^{n} </tex> является чередующейся последовательностью кванторов <tex>\forall</tex> и <tex>\exists</tex>.
# Если утверждение <tex>P_1</tex> истинно, то у игрока «существует» есть набор ходов, используя который, он может победить.
# Если же утверждение <tex>P_1</tex> ложно, то у игрока «для всех» есть набор ходов, используя который, он может победить.
|proof=
# Выражение <tex>P</tex> истинно. Провернём доказательство по индукции.
#* '''База:''' в <tex>P_1</tex> один квантор.
#*: Если единственный квантор {{---}} «любой», то какой бы параметр не поставил игрок «для всех» утверждение будет истинно по условию теоремы.
#*: Если единственный квантор {{---}} «существует», то, по условию, есть такой параметр, что утверждение будет истинно. Его и подставит игрок «существует», после чего сразу победит.
#* '''Переход:''' теорема верна, когда утверждение <tex>P_1</tex> содержит не более <tex>n-1</tex> квантора, докажем, что она верна и для утверждений, содержащих <tex>n</tex> кванторов.
#*: Пусть первый квантор «существует», тогда <tex>P_1 = \exists x_1 P_2</tex>, где <tex>P_2 = P_2(Q_2, \ldots, Q_n, \Psi(x_1,\dots ,x_n)_{x_1=const})</tex>. По условию теоремы найдётся такой параметр <tex>x_1 = x_{1_0}</tex>, что <tex>P_1</tex> истинно. Но выражение <tex>P_2</tex> истинно и содержит <tex>n-1</tex> квантор, значит, для <tex>P_2</tex> есть набор ходов игрока «существует», при котором он выигрывает. С выбранным <tex>x_1 = x_{1_0}</tex> и полученным набором ходов мы получаем выигрышную стратегию.
#*: Пусть теперь первый квантор «для всех», тогда <tex>P_1 = \forall x_1 \exists x_2 P_3</tex>, где <tex>P_3 = P_3(Q_3, \ldots, Q_n, \Psi(x_1, x_2, \dots ,x_n)_{x_1=const, x_2=const})</tex>. По условию теоремы для любого параметра <tex>x_1</tex> найдётся такой параметр <tex>x_2 = x_{2_0}</tex>, что <tex>P_1</tex> истинно. Но утверждение <tex>P_3</tex> истинно и содержит <tex>n-2</tex> квантора, значит, для <tex>P_3</tex> есть набор ходов игрока «существует», при котором он выигрывает. С выбранным <tex>x_2 = x_{2_0}</tex> и полученным набором ходов мы получим выигрышную стратегию.
# Доказательство существования выигрышной стратегии игрока «для всех» при ложном выражении <tex>\Psi</tex> аналогично.
}}
442
правки

Навигация