Изменения

Перейти к: навигация, поиск

Симуляция одним распределением другого

463 байта добавлено, 16:48, 17 марта 2018
Симуляция распределений
Количество результатов "честной монеты" $\lambda$, которые необходимы для формирования случайного исхода, $-$ это случайная величина. Её математическое ожидание:
$E\lambda = \dfrac{1}{2}\cdot1+\dfrac{1}{4}\cdot2+\dfrac{1}{8}\cdot3+\dfrac{1}{16}\cdot3+\dfrac{1}{16}\cdot4 = 1\dfrac{7}{8}.$
Можно сделать схему более экономной, используя свойство датчика случайных чисел формировать не отдельные результаты "честной монеты", а целые наборы их, например в виде числаесли использовать датчик, равномерно распределённого в формирующий число из диапазона $[0, 1]$. Образуем по данному набору вероятностей $p_i$ накопленные суммы $s_i$: , такие, что $s_0 = 0; s_i = s_{i-1} + p_i, $ для $i > 0$. Случайный исход будет вырабатываться так: по полученному из датчика случайному числу $\gamma$ определяется находится такой индекс $i$, для которого $s_{i-1} < \gamma \leqslant s_i$. Найденное значение индекса $i$ и определяет исход $A_i$. Индекс $i$ можно определять непосредственно просмотром $s_i$ подряд.
Индекс Рассмотрим приведенный выше пример с четырьмя исходам. В данном случае суммы $s_0, \ldots, s_4$ будут принимать значения <tex>0,</tex> <tex>\dfrac{3}{16},</tex> <tex>\dfrac{4}{16},</tex> <tex>\dfrac{12}{16}</tex> и <tex>1</tex> соответственно. Значению $\gamma = 0,5$ будет соответствовать $i= 3$ можно , то есть оно будет определять непосредственно просмотром исход события $s_iA_3.$ подрядТаким же образом, $\gamma = 0,985$ определяет исход события $A_4. $ Если $k$ велико, можно применять специальные приёмы ускоренного поиска, например, деление множества индексов примерно пополам.
==Общий случай==
Анонимный участник

Навигация