Изменения
→Перестановка, меняющая сумму ряда
:<tex>= \left ( H_{2n} - \frac 12 \left ( 1 + \frac 12 + \dots + \frac 1n \right ) \right ) - \frac 12 H_n = H_{2n} - H_n =</tex>
:<tex>= (\ln 2n + C + \gamma_{2n}) - (\ln n + C + \gamma_{n}) = \ln 2 + \gamma_{2n} - \gamma_{n} \rightarrow \ln 2</tex>
}}
Переставим ряд следующим образом: за каждым слагаемым с нечётным номером пишем два последовательных слагаемых с чётными номерами
:<tex>1 - \frac 12 - \frac 14 + \frac 13 - \frac 16 - \frac 18 + \frac 15 - \frac 1{10} - \frac 1{12} + \dots</tex>
{{Утверждение
|statement=
Сумма это ряда равна <tex>\frac{\ln 2}{2}</tex>
|proof=
Так как общее слагаемое ряда стремится к нулю, то достаточно показать, что сходится ряд с расставленными скобками:
:<tex>\sum\limits_{k = 0}^{\infty} \left ( \frac 1{2k+1} - \frac 1{2k+2} - \frac 1{4k + 4} \right )</tex>
Рассмотрим частичную сумму ряда с расставленными скобками:
:<tex>\sum\limits_{k = 0}^{n} \left ( \frac 1{2k+1} - \frac 1{2k+2} - \frac 1{4k + 4} \right ) = \left ( 1 + \frac 13 + \dots + \frac 1{2n+1} \right ) - \left ( \frac 12 + \frac 14 + \dots + \frac 1{4n+4} \right ) =</tex>
:<tex>= H_{2n} - \frac 12 H_n - \frac 12 H_{2n+2} = \frac 12 \left ( H_{2n} - H_n - \frac 1{2n+1} - \frac 1{2n+2} \right ) \rightarrow \frac{\ln 2}2</tex>
}}