693
правки
Изменения
Нет описания правки
<tex>f_n = \sum\limits_{k=0}^{t_n}(-1)^{k}\cdot\dbinom{t_n}{k}</tex>.
Действительно, пусть разложение n на простые множители имеет вид <tex>n = p^{k_1}_1\cdot\ldots\cdot p^{k_{t_n}}_{t_n}</tex>. Тогда коэффициент при <tex>m^{−s}</tex> функции <tex>M(s)</tex> участвует в произведении с ненулевым коэффициентом в том и только в том случае, если <tex>m</tex>является произведением некоторого подмножества множества простых чисел <tex>n = p_1\ldots p_{t_n}</tex>. Число таких подмножеств из <tex>k</tex> элементов равно <tex>\dbinom{t_n}{k}</tex>, а знак соответствующего коэффициента при <tex>m^{−s}</tex> равен <tex>(-1)^{k}</tex>.
}}
{{Теорема
|statement = Пусть <tex>f_n,g_n</tex> такие, что <tex>f_n = \sum\limits_{n\vdots k} g_k</tex>. Тогда <tex>g_n = \sum\limits_{n\vdots k} \mu_k\cdot f_k</tex>.
|proof = Равенство <tex>f_n = \sum\limits_{n\vdots k} g_k</tex> означает, что <tex>F(s) = \zeta(s)\cdot G(s)</tex>, где <tex>F(s),G(s)</tex> {{---}} производящие функции Дирихле для последовательностей <tex>\{f_n\}_{n=1}^{\infty}</tex> и <tex>\{g_n\}_{n=1}^{\infty}</tex> соответственно. Домножим левую и правую части на <tex>M(s)</tex>. Получаем <tex>M(s)\cdot F(s) = M(s)\cdot\zeta(s)\cdot G(s)</tex>, а правая часть равна <tex>G(s)</tex> по предыдущей теореме.
}}