Изменения

Перейти к: навигация, поиск

Математическое ожидание времени поглощения

40 байт добавлено, 13:39, 2 апреля 2018
Нет описания правки
Пусть <tex> b_0 </tex> - вектор вероятностей начальных состояний, то есть <tex> b_0[j] </tex> - вероятность для цепи Маркова начать в состоянии <tex> j</tex>. Определим <tex> b_r[j]</tex> как вероятность находиться в состоянии <tex> j </tex> после первых <tex> r </tex> шагов.
<tex> b_r = b_0 Q^r </tex> (доказательство аналогично части [[теорема о поглощении|теоремы о поглощении]]).
Пусть <tex> p^r_j </tex> - количество раз, которое цепь Маркова находится в состоянии <tex> j </tex> за первые <tex> r </tex> шагов. Рассмотрим <tex> v[j] </tex> - среднее количество раз, которое мы побываем в состоянии <tex> j </tex> (далее <tex> E(x) </tex> означает математическое ожидание величины <tex> x </tex>):
<tex> v[j] = E(p^r_j) = E(p^{r-1}_j) + b_{r}[j] = (\sum\limits_{t = 0}^{r}b_{t})[j] = b_0(\sum\limits_{t = 0}^{r}Q^{t})[j] </tex>.
Отсюда <tex> v = b_0 \sum\limits_{t = 0}^{r}Q^{t} = b_0 N</tex>, где <tex> N </tex> - [[фундаментальная матрица|фундаментальная матрица]].
Математическое ожидание можно посчитать как сумму всех элементов вектора v.
200
правок

Навигация