Изменения

Перейти к: навигация, поиск

Числа Каталана

909 байт добавлено, 17:06, 13 апреля 2018
Вычисление производящей функции чисел Каталана
Проверим, что <tex>G(z)</tex> действительно является производящей функцией чисел Каталана. Для этого разложим <tex>G(z)</tex> в ряд.
 
<tex>G(z) = \dfrac{1 - \sqrt{1-4z}}{2z} = \dfrac{1}{2z} - \dfrac{\sqrt{1-4z}}{2z} = \dfrac{1}{2z} - \dfrac{1}{2z} \cdot \sqrt{1 - 4z} = \dfrac{1}{2z} - \dfrac{1}{2z} \cdot (1 - 4z)^{\frac{1}{2}} = \dfrac{1}{2z} - \dfrac{1}{2z} \cdot \sum\limits_{n = 0}^{\infty} ((-4z)^n \cdot \dbinom{\frac{1}{2}}{n})</tex>
 
<tex> = \dfrac{1}{2z} - \dfrac{1}{2z} \cdot \sum\limits_{n = 0}^{\infty} ((-4z)^n \cdot \dfrac{(-1)^{n - 1}}{(2n - 1) \cdot 4^n} \cdot \dbinom{2n}{n}) = \dfrac{1}{2z} - \dfrac{1}{2z} \cdot \sum\limits_{n = 0}^{\infty} (\dfrac{(-1)^n \cdot 4^n \cdot z^n \cdot (-1)^{n - 1}}{(2n - 1) \cdot 4^n} \cdot \dbinom{2n}{n}) = \dfrac{1}{2z} - \dfrac{1}{2z} \cdot \sum\limits_{n = 0}^{\infty} (\dfrac{(-1)^{2n - 1} \cdot 4^n \cdot z^n}{(2n - 1) \cdot 4^n} \cdot \dbinom{2n}{n})</tex>
 
<tex> = \dfrac{1}{2z} - \dfrac{1}{2z} \cdot \sum\limits_{n = 0}^{\infty} (\dfrac{-z^n}{(2n - 1)} \cdot \dbinom{2n}{n})</tex>
==Смотри также==
Анонимный участник

Навигация