Изменения

Перейти к: навигация, поиск

Обсуждение:Метрическое пространство

1472 байта добавлено, 23:43, 4 января 2011
Нет описания правки
При этом <tex>y</tex>, вообще говоря, не обязан быть центром шара, однако далее в доказательстве это подразумевается. Лечится это очень просто, достаточно сказать, что если <tex>y</tex> лежит в некотором шаре <tex>V_1(x)_{r_1}</tex>, то существует шар <tex>V_2(y)_{r_2} \subset V_1</tex> (надо положить <tex>r_2 < r_1 - \rho(x, y)</tex>). Возможно даже, что этот факт уже доказан в статье, но пояснить этот момент в любом случае стоит.
 
 
По поводу свойств открытых и замкнутых множеств: почему все <tex> X </tex> открыто, понятно, мы можем представить его как <tex> \bigcup\limits_{x \in X} V{_r}(x) (r > 0) </tex>. А почему пустое множество является открытым, типа, это пустое объединение? Далее, раз уж класс замкнутых множеств обладает двойственными свойствами по отношению к классу открытых, то, наверное, свойства будут выглядеть так:
=== Свойства замкнутых множеств ===
# <tex> X, \varnothing </tex> {{---}} замкнуты
# Если <tex>\ F_{\alpha} </tex> {{---}} замкнуто <tex>\forall \alpha \in A </tex>, то <tex>\bigcap\limits_{\alpha \in A} F_{\alpha} </tex> {{---}} замкнуто
# Если <tex>\ F_1 \dots F_n </tex> {{---}} замкнуты, то <tex> \Rightarrow \bigcup\limits_{j = 1}^n F_j </tex> {{---}} замкнуто
 
Вроде бы все логично и напрямую следует из законов Де Моргана. В статью пока не впиливаю, потому что в конспекте на эту тему у меня какой-то бред.--[[Участник:Sementry|Мейнстер Д.]] 20:43, 4 января 2011 (UTC)
689
правок

Навигация