74
правки
Изменения
м
Нет описания правки
Утверждение леммы эквивалентно тому, что существует предел <tex>\lim\limits_{n \to \infty} {\cfrac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim\limits_{n \to \infty} {( \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n )}</tex>.
Для доказательства существования предела применим критерий Коши<ref>[http://nuclphys.sinp.msu.ru/mathan/p1/m0509.html Критерий Коши]</ref>, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>.
Перепишем отношение <tex>\cfrac{a_{n+1}}{a_n}</tex> в виде