Изменения

Перейти к: навигация, поиск
Нет описания правки
<tex>[x^{2k + 1}]C(x) = \sum\limits_{i = 0}^{2k + 1}((i + 1) \cdot (-1)^{2k + 1 - i} \cdot (2k + 2 - i))</tex>
 
Рассмотрим <tex>i</tex>-ое и <tex>2k + 1 - i</tex>-ое слагаемые этой суммы равны. Модуль <tex>i</tex>-ого равен <tex>(i + 1) \cdot (2k + 2 - i)</tex>, а модуль <tex>2k + 1 - i</tex>-ого слагаемого равен <tex>(2k + 1 - i + 1) \cdot (2k + 2 - (2k + 1 - i)) = (2k + 2 - i) \cdot (i + 1)</tex>, то есть слагаемые равны по модулю. Знак <tex>i</tex>-ого слагаемого определяется выражением <tex>(-1)^{2k + 1 - i} = (-1)^{1 - i}</tex>, а знак <tex>2k + 1 - i</tex>-ого {{---}} выражением <tex>(-1)^{2k + 1 - (2k + 1 - i)} = (-1)^i</tex>, то есть эти слагаемые равны по модулю, но противоположны по знаку.
 
Так как слагаемых всего <tex>2k + 1 - 0 + 1</tex> (то есть их чётное число), и каждое слагаемое входит в сумму дважды с противоположными знаками, <tex>[x^{2k + 1}]C(x) = 0</tex>
Анонимный участник

Навигация