Изменения
Нет описания правки
{{Определение
|definition =
}}
== Простой пример сведения по Карпу ==
Таким образом, полное время работы программы есть сумма полиномов от <tex>|x|</tex> и потому тоже является полиномом от <tex>|x|</tex>.
}}
== Определения трудных и полных задач ==
{{Определение
|definition =
<tex>C</tex> — сложностный класс. Язык <tex>L</tex> называется '''<tex>C</tex>-трудным (относительно полиномиального сведения) (<tex>C</tex>-hard)''', если любой язык <tex>M</tex> из <tex>C</tex> сводится по Карпу к <tex>L</tex>:<br>
<tex> (L </tex> — <tex>C</tex>-hard <tex>) \overset{\underset{\mathrm{def}}{}}{\Leftrightarrow} ( \forall M \in C \Rightarrow M \leq L) </tex>.
}}
{{Определение
|definition =
<tex>C</tex> — сложностный класс. Язык <tex>L</tex> называется '''<tex>C</tex>-полным (относительно полиномиального сведения) (<tex>C</tex>-complete)''', если <tex>L</tex> является <tex>C</tex>-трудным и сам лежит в <tex>C</tex>.
}}
== Обобщение на другие ограничения на сведения ==
{{Определение
|definition =
<tex>D</tex> — класс языков, распознаваемых программами с некоторыми ограничениями. Тогда обозначим <tex>\widetilde{D}</tex> класс вычислимых функций, вычисляемых программами с теми же ограничениями.
}}
{{Определение
|definition =
'''Язык <tex>L_1</tex> <tex>\widetilde{D}</tex>-сводится по Карпу к языку <tex>L_2</tex> (<tex>L_1 \leq_{\widetilde{D}} L_2</tex>)''', если существует такая функция <tex>f</tex> из <tex>\widetilde{D}</tex>, что <tex>x</tex> принадлежит <tex>L_1</tex> тогда и только тогда, когда <tex>f(x)</tex> принадлежит <tex>L_2</tex>:<br>
<tex> (L_1 \leq_{\widetilde{D}} L_2) \overset{\underset{\mathrm{def}}{}}{\iff} ( \exists f \in \widetilde{D} : x \in L_1 \Leftrightarrow f(x) \in L_2 ) </tex>.
}}
'''Замечание.''' Часто используется сведение из <tex>\widetilde{P}</tex>, поэтому вместо «<tex>\widetilde{P}</tex>-сводится по Карпу» говорят просто «сводится». Также индекс у символа сведения обычно опускают.
{{Лемма
В самом деле: <tex>( x \in L_1 \Leftrightarrow f(x) \in L_2 ) \iff ( \overline{x \in L_1} \Leftrightarrow \overline{f(x) \in L_2} ) </tex> <tex>\iff ( x \in \overline{L_1} \Leftrightarrow f(x) \in \overline{L_2} ) \iff (\overline {L_1} \leq_{\widetilde{D}} \overline {L_2})</tex>.
}}
{{Определение