142
правки
Изменения
Нет описания правки
|author=Рисс, о почти перпендикуляре
|statement=
<tex>Y</tex> - собственное подпространство <tex>X \Rightarrow \forall \varepsilon \in (0, 1) \; \exists z_{\varepsilon} \in X : \|z_{\varepsilon}\| = 1,\; \rho(z_{\varepsilon}, Y) \geq 1 - \varepsilon</tex> (где <tex>\rho(z_{\varepsilon}z, Y) = \inf\limits_{y \in Y} \|z-y\|</tex>)
|proof=
<tex>\forall z \notin Y \; \forall \varepsilon\; \exists y_{\varepsilon} \in Y : \rho(z, Y) \leq \|z - y_{\varepsilon}\| \leq \frac{1}{1 - \varepsilon} \cdot \rho(z, Y)</tex> (по свойствам inf). Тогда положим <tex>z_{\varepsilon}</tex> из условия леммы равным <tex>\frac{z - y_{\varepsilon}}{\|z - y_{\varepsilon}\|}</tex>