Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2018 осень

2389 байт добавлено, 12:17, 29 сентября 2018
Нет описания правки
# Сколько остовных деревьев у полного двудольного графа $K_{n,m}$?
# Докажите или опровергните, что если в связном графе любой максимальный по включению простой путь (путь, к которому нельзя добавить ребро в начало или в конец) является диаметром, то такой граф является деревом.
# Обозначим как $\lambda(G)$ минимальное число ребер, которое нужно удалить в графе, чтобы он потерял связность, $\kappa(G)$ - минимальное число вершин, которое нужно удалить в графе, чтобы он потерял связность (для полного графа полагаем $\kappa(G)=n-1$). Докажите, что $\kappa(G) \le \lambda(G) \le \delta(G)$.
# Докажите. что для любых $1 \le \kappa(G) \le \lambda(G) \le \delta(G)$ существует граф $G$ с такими параметрами.
# Докажите, что не существует графов с $\kappa(G) = 3$ и 7 ребрами.
# Пусть $G$ - полный двудольный граф, за исключением $K_{2,2}$. Докажите $\lambda(G)=\delta(G)$, почем единственный способ удалить $\lambda(G)$ ребер, чтобы граф потерял связность - удалить все ребра, инцидентные одной из вершин.
# Докажите, что если в связном графе любой блок эйлеров, то и весь граф эйлеров.
# Граф называется произвольно вычерчиваемым из вершины $u$, если следующая процедура всегда приводит к эйлеровому циклу: начиная с вершины $u$, переходим каждый раз по любому исходящему из текущей вершины ребру, по которому ранее не проходили. Докажите, что эйлеров граф является произвольно вычерчиваемым из $u$, если любой его простой цикл содержит $u$.
# Докажите, что если граф $G$ является произвольно вычерчиваемым из $u$, то $u$ имеет максимальную степень в $G$.
# Докажите, что если граф $G$ является произвольно вычерчиваемым из $u$, то либо $u$ - единственная точка сочленения в $G$, либо в $G$ нет точек сочленения.
Анонимный участник

Навигация