Изменения

Перейти к: навигация, поиск
Доказательство
Пусть дан граф <tex>G</tex>. Запустим <tex>dfs(G)</tex>. Рассмотрим выполнение процедуры поиска в глубину от некоторой вершины <tex> v </tex>. Так как все серые вершины лежат в стеке рекурсии, то для них вершина <tex> v </tex> достижима, так как между соседними вершинами в стеке есть ребро. Тогда если из рассматриваемой вершины <tex> v </tex> существует ребро в серую вершину <tex> u </tex>, то это значит, что из вершины <tex> u </tex> существует путь в <tex> v </tex> и из вершины <tex> v </tex> существует путь в <tex> u </tex> состоящий из одного ребра. И так как оба эти пути не пересекаются, то цикл существует.
 
Докажем, что если в графе <tex>G</tex> существует цикл, то <tex>dfs(G)</tex> его всегда найдет. Пусть <tex> v </tex> - первая вершина принадлежащая циклу, рассмотренная поиском в глубину. Тогда существует вершина <tex> u </tex>, принадлежащая циклу и имеющая ребро в вершину <tex> v </tex>. Так как из вершины <tex> v </tex> в вершину <tex> u </tex> существует путь (они лежат на одном цикле), то во время выполнения процедуры поиска в глубину от вершины <tex> u </tex>, вершина <tex> v </tex> будет серой. Так как из <tex> u </tex> есть ребро в <tex> v </tex>, то это ребро в серую вершину. Следовательно <tex>dfs(G)</tex> нашел цикл.
Анонимный участник

Навигация