Изменения

Перейти к: навигация, поиск

Теория Рамсея

3 байта добавлено, 15:51, 28 ноября 2018
Существование. Оценки сверху
'''База:''' <tex>r(n,\;1) = r(1,\;n) = 1</tex>, так как 1-вершинный граф можно считать полным графом любого цвета.
'''Индукционный переход:''' Пусть <tex>n>1</tex> и <tex>m>1</tex>. Рассмотрим полный чёрно-белый граф из <tex>r(n-1,\;m)+r(n,\;m-1)</tex> вершин. Возьмём произвольную вершину <tex>v</tex> и обозначим через <tex>M</tex> и <tex>N</tex> множества инцидентные <tex>v</tex> в чёрном и белом подграфе соответственно. Так как в графе <tex>r(n-1,\;m)+r(n,\;m-1)=|M|+|N|+1</tex> вершин, согласно принципу Дирихле, либо <tex>|M|\geqslant r(n-1,\;m)</tex>, либо <tex>|N|\geqslant r(n,\;m-1)</tex>.
Пусть <tex>|M|\geqslant r(n-1,\;m)</tex>. Тогда либо в <tex>M</tex> (и следовательно во всём графе) есть белый <tex>K_m</tex>, что завершает доказательство, либо в <tex>M</tex> есть чёрный <tex>K_{n-1}</tex>, который вместе с <tex>v</tex> образует чёрный <tex>K_n</tex>. Случай <tex>|N|\geqslant r(n,\;m-1)</tex> рассматривается аналогично.
Анонимный участник

Навигация