Изменения

Перейти к: навигация, поиск

Глубокое обучение

2 байта убрано, 20:19, 7 декабря 2018
Применения: Для Леры
== Применения ==
* Распознавание речи<ref>[https://en.wikipedia.org/wiki/Speech_recognition Speech recognition, Wikipedia]</ref>. Все основные коммерческие системы распознавания речи (например, Microsoft Cortana, Xbox, Skype Translator, Amazon Alexa, Google Now, Apple Siri, Baidu и iFlyTek) основаны на глубоком обучении.
* Компьютерное зрение<ref>[http://neerc.ifmo.ru/wiki/index.php?title=Задача_нахождения_объектов_на_изображении Задача нахождения объектов на изображении]<sup>[на 06.12.18 не создан]</sup></ref>. На сегодняшний день системы распознавания образов, основанные на глубоком обучении, уже умеют давать более точные результаты, чем человеческий глаз<ref>[https://www.sciencedirect.com/science/article/pii/S0893608012000524 Multi-column deep neural network for traffic sign classification]</ref>.
* Обработка естественного языка<ref>[https://en.wikipedia.org/wiki/Natural_language_processing Natural language processing, Wikipedia]</ref>. Нейронные сети использовались для реализации языковых моделей еще с начала 2000-х годов. После изобретения LSTM помогла улучшить машинный перевод и языковое моделирование<ref>[https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf Sequence to Sequence Learning with Neural Networks]</ref>.
* Обнаружение новых лекарственных препаратов. К примеру, нейронная сеть AtomNet использовалась для прогнозирования новых биомолекул - кандидатов для лечения таких заболевания, как вирус Эбола и рассеянный склероз.
Анонимный участник

Навигация