Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2018 осень

2969 байт добавлено, 11:32, 10 декабря 2018
Нет описания правки
# Циклы двойственного матроида называются коциклами. Докажите, что любая база пересекается с любым коциклом?
# Докажите, что двойственный к матричному матроид является матричным. Как устроена его матрица?
# Докажите, что двойственный матроид к $K_5$ не является графовым.
# Докажите, что двойственный матроид к $K_{3,3}$ не является графовым.
# Когда двойственный к графовому матроид является графовым?
# Будем называть два элемента $x$ и $y$ матроида параллельными, если пара $\{x, y\}$ образует цикл. Докажите, что если $A$ независимо $x \in A$, а $x$ и $y$ параллельны, то $A\setminus x\cup y$ также независимо.
# Дайте альтертанивное определение параллельных элементов на языке баз.
# Докажите, что свойство быть параллельными является отношением эквивалентности.
# Рассмотрим носитель некоторого матроида, упорядочим произвольным образом его элементы: $X = \{x_1, x_2, \ldots, x_n\}$. Пусть $Y = \left\{x_k \,|\, rank(\{x_1, \ldots, x_{k-1}, x_k\}) > rank(\{x_1, \ldots, x_{k-1}\})\right\}$. Докажите, что $Y$ независимо.
# Сверхсильная теорема о базах. Докажите, что для любых двух различных баз $A$ и $B$ и элемента $x \in A \subset B$ найдётся $y \in B \subset A$, так что $A \setminus x \cup y$ и $B \setminus y \cup x$ обе являются базами.
# Проекция матроида. Пусть $M = \langle X, I \rangle$ - матроид, $f : X \to Y$ - произвольная функция. Обратите внимание, что нет необходимости, чтобы $f$ была инъекцией или сюрьекцией. Построим конструкцию $f(M)$ как пару из носителя $Y$ и семейства множеств $f(I) = \{ f(A) \,|\, A \in I\}$. Докажите, что $f(M)$ является матроидом.
# Объединение матроидов. Объединением матроидов $M_1 = \langle X, I_1\rangle$ и $M_2 = \langle X, I_2\rangle$ называется конструкция $M = \langle X, I\rangle$, где $A \in I$, если найдутся такие $A_1 \in I_1$ и $A_2 \in I_2$, где $A = A_1 \cup A_2$. Докажите, что объединение матроидов является матроидом. Указание: рассмотрите объединение матроидов как проекцию суммы матроидов.
# Обратная лемма о замене. Рассмотрим матроид. Докажите, что если $A$ независимо и $B$ независимо, $|A| = |B|$, то в графе замен для множества $A$ найдется полное паросочетание на $A \oplus B$.
Анонимный участник

Навигация