Изменения

Перейти к: навигация, поиск

Модель алгоритма и её выбор

252 байта добавлено, 19:25, 16 января 2019
Добавлены картинки
Библиотека позволяет автоматически выбирать из 27 базовых алгоритмов, 10 мета-алгоритмов и 2 ансамблевых алгоритмов лучший, одновременно настраивая его гиперпараметры при помощи алгоритма [https://www.ml4aad.org/automated-algorithm-design/algorithm-configuration/smac/ SMAC]. Решение достигается полным перебором: оптимизация гиперпараметров запускается на всех алгоритмах по очереди. Недостатком такого подхода является слишком большое время выбора модели.
===Автоматизированный выбор модели в библиотеке [https://epistasislab.github.io/tpot/ Tree-base Pipeline Optimization Tool (TPOT)] для Python.===
[[Файл:TPOT-scheme.jpeg|300px|thumb|Рис 1. Схема выбора модели в библиотеке TPOT]]
Библиотека используется для одновременного поиска оптимальной модели и оптимальных гиперпараметров модели для задачи классификации.
После поиска конвейера его также можно экспортировать в файл Python.
 
===Автоматизированный выбор модели в библиотеке [https://automl.github.io/auto-sklearn/stable/ auto-sklearn] для Python.===
[[Файл:Auto-sklearn-scheme.png|300px|thumb|Рис 2. Схема выбора модели в библиотеке auto-sklearn]]
Библиотека используется для одновременного поиска оптимальной модели и оптимальных гиперпараметров модели для задачи классификации.
11
правок

Навигация