100
правок
Изменения
Нет описания правки
Если из вершины <tex>x</tex> не существует дополняющей цепи относительно паросочетания <tex>M</tex>, то если паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи, то из <tex>x</tex> не существует дополняющей цепи в <tex>M'</tex>.
|proof=
[[Файл:KuhnKuhn1.png|thumb|left|300x300px|Пунктиром обозначен путь между двумя вершинами.Ребро красного цвета лежит в паросочетании, а черного - нет.]][[Файл:Kuhn2.png|thumb|right|300x300px|]]
Доказательство от противного. Допустим в паросочетание внесли изменения вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex> и из вершины <tex>x</tex> появилась дополняющая цепь. Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь из <tex>x</tex> существовала и в исходном паросочетании. Пусть <tex>p</tex> - ближайшая к <tex>x</tex> вершина, которая принадлежит и новой дополняющей цепи и цепи <tex>(y \rightsquigarrow z)</tex>. Тогда <tex>MP</tex> - последнее ребро на отрезке <tex>(y \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>NP</tex> - последнее ребро на отрезке <tex>(z \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>QP</tex> - последнее ребро лежащее на отрезке <tex>(x \rightsquigarrow p)</tex> новой дополняющей цепи.(см. рисунок). Допустим <tex>MP</tex> принадлежит паросочетанию <tex>M'</tex>, тогда <tex>NP</tex> ему не принадлежит. Поскольку паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex>, в паросочетание <tex>M</tex> входило ребро <tex>NP</tex>, а ребро <tex>MP</tex> нет. Кроме того, ребро <tex>QP</tex> не лежит ни в исходном паросочетании <tex>M'</tex>, ни в паросочетании <tex>M'</tex>, в противном случае оказалось бы, что вершина <tex>p</tex> инцидентна нескольким ребрам из паросочетания, что противоречит определению паросочетания. Тогда заметим, что цепь <tex>(x \rightsquigarrow z)</tex>, полученная объединением цепей <tex>(x \rightsquigarrow p)</tex> и <tex>(p \rightsquigarrow z)</tex>, по определению будет дополняющей в паросочетании <tex>M</tex>, что приводит к противоречию, поскольку в паросочетании <tex>M</tex> из вершины <tex>x</tex> не существует дополняющей цепи.
}}