Изменения

Перейти к: навигация, поиск

Общие понятия

5375 байт убрано, 22:00, 24 января 2019
Примеры задач
На стадии обучения производится синтез и отбор информативных признаков и определяется, сколько баллов назначать за каждый признак, чтобы риск принимаемых решений был минимален. Чем выше суммарное число баллов заёмщика, набранных по совокупности информативных признаков, тем более надёжным считается заёмщик.
* '''Прогнозирование потребительского спроса''' <br/>Решается современными супермаркетами и торговыми розничными сетями. Для эффективного управления торговой сетью необходимо прогнозировать объёмы продаж для каждого товара на заданное число дней вперёд. На основе этих прогнозов осуществляется планирование закупок, управление ассортиментом, формирование ценовой политики, планирование промоакций (рекламных кампаний). Специфика задачи в том, что количество товаров может исчисляться десятками или даже сотнями тысяч. Прогнозирование и принятие решений по каждому товару «вручную» просто немыслимо. Исходными данными для прогнозирования являются временные ряды цен и объёмов продаж по товарам и по отдельным магазинам. Современные технологии позволяют снимать эти данные непосредственно с кассовых аппаратов. Для увеличения точности прогнозов необходимо также учитывать различные внешние факторы, влияющие на потребительский спрос: уровень инфляции, погодные условия, рекламные кампании, социально-демографические условия, активность конкурентов. В зависимости от целей анализа в роли объектов выступают либо товары, либо магазины, либо пары «магазин, товар». Ещё одна особенность задачи — несимметричность функции потерь. Если прогноз делается с целью планирования закупок, то потери от заниженного прогноза существенно выше потерь от завышенного. * '''Принятие инвестиционных решений на финансовом рынке''' <br/>В этой задаче умение хорошо прогнозировать самым непосредственным образом превращается в прибыль. Если инвестор предполагает, что цена акции вырастет, он покупает акции, надеясь продать их позже по более высокой цене. И, наоборот, прогнозируя падение цен, инвестор продаёт акции, чтобы впоследствии выкупить их обратно по более низкой цене. Задача инвестора-спекулянта в том, чтобы правильно предугадать направление будущего изменения цены — роста или падения. Большой популярностью пользуются автоматические торговые стратегии -алгоритмы, принимающие торговые решения без участия человека. Разработка такого алгоритма — тоже задача обучения с учителем. В роли объектов выступают ситуации, фактически, моменты времени. Описание объекта — это вся предыстория изменения цен и объёмов торгов, зафиксированная к данному моменту. В простейшем случае объекты необходимо классифицировать на три класса, соответствующих возможным решениям: купить, продать или выжидать. Обучающей выборкой для настройки торговых стратегий служат исторические данные о движении цен и объёмов за некоторый промежуток времени. Критерий качества в данной задаче существенно отличается от стандартного функционала средней ошибки, поскольку инвестора интересует не точность прогнозирования, а максимизация итоговой прибыли. Современный биржевой технический анализ насчитывает сотни параметрических торговых стратегий, параметры которых принято настраивать по критерию максимума прибыли на выбранном интервале истории.
* '''Задача классификации видов ириса (Фишер 1936)''' <ref>[https://ru.wikipedia.org/wiki/%D0%98%D1%80%D0%B8%D1%81%D1%8B_%D0%A4%D0%B8%D1%88%D0%B5%D1%80%D0%B0 Задача классификации видов ириса]</ref> <ref>[http://edu.mmcs.sfedu.ru/pluginfile.php/17198/mod_resource/content/1/01%20%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5%20%D0%BF%D0%BE%D0%BD%D1%8F%D1%82%D0%B8%D1%8F.pdf Презентация "Основные понятия машинного обучения"]</ref><br/>
[[Файл:Iris_classification.png|650px]]
115
правок

Навигация