333
правки
Изменения
→Методы кластеризации
* Графовые алгоритмы кластеризации. Наиболее примитивный класс алгоритмов. В настоящее время практически не применяется на практике.
* Вероятностные алгоритмы кластеризации. Каждый объект из обучающей выборки относится к каждому из кластеров с определенной степенью вероятности.
** [[EM-алгоритм]]<sup>[на 28.01.19 не создан]</sup>
* [[Иерархическая_кластеризация|Иерархические алгоритмы кластеризации]]. Упорядочивание данных путем создания иерархии вложенных кластеров.
* [[K-средних|Алгоритм <tex>\mathrm{k}</tex>-средних]] <sup>[на 28.01.19 не создан]</sup> (англ. ''<tex>\mathrm{k}</tex>-means''). Итеративный алгоритм, основанный на минимизации суммарного квадратичного отклонения точек кластеров от центров этих кластеров.
* Распространение похожести (англ. ''affinity propagation''). Распространяет сообщения о похожести между парами объектов для выбора типичных представителей каждого кластера.
* Сдвиг среднего значения (англ. ''mean shift''). Выбирает центроиды кластеров в областях с наибольшей плотностью.
[[Файл:cluster_comparison.png|thumb|800px|center|<div style="text-align:center">Сравнение алгоритмов кластеризации из пакета scikit-learn<ref>[https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html scikit-learn {{---}} Comparing different clustering algorithms on toy datasets]</ref></div>]]
== Меры качества кластеризации ==
Для оценки качества кластеризации задачу можно переформулировать в терминах задачи дискретной оптимизации.