Изменения

Перейти к: навигация, поиск

Бустинг, AdaBoost

44 байта убрано, 17:37, 28 января 2019
Описание
==Описание==
'''Бустинг''' (англ. ''boosting'') — это [[Мета-обучение|мета-алгоритм машинного обучения]]<sup>[на 22.01.19 не создан]</sup>. Основной идеей бустинга является комбинирование слабых функций, которые строятся в ходе итеративного процесса, где на каждом шаге новая модель обучается с использованием данных об ошибках предыдущих. Сильный обучающий алгоритм является классификатором, хорошо [[Корреляция случайных величин|коррелирующим]] с верной классификацией, в отличие от слабого. Наравне с бустингом в мета-обучении также рассматривают такие понятия, как [[Виды ансамблей|бэггинг]] (англ. ''bagging'') и стэкинг<ref>[https://dyakonov.org/2017/03/10/c%D1%82%D0%B5%D0%BA%D0%B8%D0%BD%D0%B3-stacking-%D0%B8-%D0%B1%D0%BB%D0%B5%D0%BD%D0%B4%D0%B8%D0%BD%D0%B3-blending/#more-4558 Стекинг {{---}} Дьяконов Александр]</ref> (англ. ''stacking''). Бэггинг, в отличии от бустинга, использует параллельное обучение базовых классификаторов. Стэкинг же комбинирует результаты различных алгоритмов, получая тем самым более точный ответ.
Одним из недостатков бустинга является то, что он может приводить к построению громоздких композиций, состоящих из сотен алгоритмов. Такие композиции исключают возможность содержательной интерпретации, требуют больших объёмов памяти для хранения базовых алгоритмов и существенных затрат времени на вычисление классификаций.
333
правки

Навигация