276
правок
Изменения
→Логическая регрессия
==Логическая регрессия==
'''Логическая регрессия''' (англ. ''logic regression'') {{---}} обобщенный метод регрессии, применяемый в основном в случае, когда независимые переменные имеют двоичную природу (при этом зависимая переменная не обязательно двоичная). Задачей логической регрессии является определение независимых переменных, которые могут быть выражены как результат вычисления [[Определение булевой функции |булевой функции]] от других независимых переменных.
Обычно в методах регрессии не учитывается связь между переменными. Предполагается, что влияние каждой переменной на результат не зависит от значений других переменных. Однако это предположение зачастую неверно.
Пусть <tex>x_1, x_2, \dots, x_k</tex> {{---}} двоичные независимые переменные, и пусть <tex>y</tex> {{---}} зависимая переменная. Будем пытаться натренировать модели регрессии вида <tex>g(E(y)) = b_0 + b_1 L_1 + \dots + b_n L_n</tex>, где <tex>L_j</tex> {{---}} булева функция от переменных <tex>x_i</tex> (например <tex>L_j = (x_2 \lor \overline{x_4}) \land x_7</tex>).
Для каждого типа модели необходимо определить функцию, которая отражает качество рассматриваемой модели. Например, для линейной регрессии такой функцией может быть остаточная сумма квадратов. Целью метода логической регрессии является минимизация выбранной функции качества посредством настройки параметров <tex>b_j</tex> одновременно с булевыми выражениями <tex>L_j</tex>.
[[Файл: Logic_tree_moves.jpg|400px|thumb|Рис.3. Допустимые действия в процессе роста дерева.<br/>Элементы, появившиеся в результате применения операции, выделены черным фоном.]]
Может показаться не совсем понятным, как же применить регрессию к булевым выражениям. Рассмотрим в общих чертах алгоритм логической регрессии.
Логическая регрессия, как и другие методы регрессии, перебирает различные выражения в попытках минимизировать функцию потерь. Для <tex>k</tex> переменных можно составить <tex>2^{2^k}</tex> различных выражений. Нужно найти более эффективный метод для поиска наилучшего выражения, чем простой перебор всех вариантов.
==См. также==