Изменения

Перейти к: навигация, поиск

Метод опорных векторов (SVM)

Нет изменений в размере, 00:58, 5 апреля 2019
м
Исправлена ссылка на ядра
Существует ещё один подход к решению проблемы линейной разделимости, известный как трюк с ядром (kernel trick). Если выборка объектов с признаковым описанием из $X = \mathbb{R}^n$ не является линейно разделимой, мы можем предположить, что существует некоторое пространство $H$, вероятно, большей размерности, при переходе в которое выборка станет линейно разделимой. Пространство $H$ здесь называют спрямляющим, а функцию перехода $\psi : X \to H$ — спрямляющим отображением. Построение SVM в таком случае происходит так же, как и раньше, но в качестве векторов признаковых описаний используются векторы $\psi(\vec{x})$, а не $\vec{x}$. Соответственно, скалярное произведение $\langle \vec{x}_1, \vec{x}_2 \rangle$ в пространстве $X$ везде заменяется скалярным произведением $\langle \psi(\vec{x}_1), \psi(\vec{x}_2) \rangle$ в пространстве $H$. Отсюда следует, что пространство $H$ должно быть гильбертовым, так как в нём должно быть определено скалярное произведение.
Обратим внимание на то, что постановка задачи и алгоритм классификации не используют в явном виде признаковое описание и оперируют только скалярными произведениями признаков объектов. Это даёт возможность заменить скалярное произведение в пространстве $X$ на [[ЯдроЯдра|ядро]] — функцию, являющуюся скалярным произведением в некотором $H$. При этом можно вообще не строить спрямляющее пространство в явном виде, и вместо подбора $\psi$ подбирать непосредственно ядро.
Постановка задачи с применением ядер приобретает вид:
23
правки

Навигация