32
правки
Изменения
→Дифференцирование для однослойной сети
:<math>o_j = \varphi(\text{net}_j) = \varphi\left(\sum_{k=1}^n w_{kj}o_k\right).</math>
Входные значения <math>\text{net}_j</math> нейрона {{---}} это взвешенная сумма выходных значений <math>o_k</math> предыдущих нейронов. Если нейрон в первом слове слое после входного слоя, то <math>o_k</math> входного слоя {{---}} это просто входные значения <math>x_k</math> сети. Количество входных значений нейрона <math>n</math>. Переменная <math>w_{kj}</math> обозначает вес на ребре между нейроном <math>k</math> предыдущего слоя и нейроном <math>j</math> текущего слоя.
Функция активации <math>\varphi</math> нелинейна и дифференцируема. Одна из распространенных функций активации {{---}} сигмоида: