Изменения
Если граф планарен то НЕОБХОДИМО чтобы он не содержал К5, К3,3. И чтобы граф был планарен ДОСТАТОЧНО чтобы он не содержал К5, К3,3. Или я не прав?
|proof =
Заметим, что из планарности графа следует планарность гомеоморфного графа и наоборот. В самом деле, пусть <tex> G_1 </tex> {{---}} плоский граф.
Если добавить на нужных ребрах вершины степени <tex> 2 </tex> и удалить некотрые вершины степени <tex> 2 </tex> в <tex> G_1 </tex>, получим укладку гомеоморфного графа <tex> G_2 </tex>. Таким образом, доказательство достаточности необходимости следует из [[Непланарность_K5_и_K3,3| непланарности <tex>K_5</tex> и <tex>K_{3, 3}</tex>]].
Докажем неоходимостьдостаточность. От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных <tex> K_{5} </tex> или <tex> K_{3, 3} </tex>. Пусть <tex> G </tex> {{---}} такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.
=== G связен ===
Если <tex> G </tex> не [[Отношение_связности,_компоненты_связности|связен]], то в силу минимальности <tex> G </tex> его компоненты связности планарны и, следовательно, сам граф <tex> G </tex> планарен.