Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2019 осень

15 байт добавлено, 17:35, 8 октября 2019
Нет описания правки
# Докажите, что хроматический многочлен дерева равен $t(t-1)^{n - 1}$.
# Докажите, что если хроматический многочлен графа равен $t(t-1)^{n - 1}$, то граф является деревом.
# Приведите пример двух связных графов, которые не являются деревьями, не являются изоморфными и имеют одинаковые хроматические многочлены.
# Докажите, что если длина максимального простого нечетного цикла в $G$ есть $k$, то $\chi(G)\le k + 1$.
# Если степени вершин графа $G$ равны $d_1 \ge d_2 \ge \ldots \ge d_n$, то $\chi(G)\le \max\min\{i, d_i+1\}$.
Анонимный участник

Навигация