Изменения

Перейти к: навигация, поиск
Стохастическое вложение соседей
<tex>q_{j|i} = \frac{\exp{(-{\left\Vert y_i - y_j \right\Vert}^2)}}{\sum\limits_{k \neq i}\exp{({-\left\Vert x_i - x_k \right\Vert}^2)}}</tex>.
Заметим, что данное распределение получается Данные вероятности получаются из тех же самых предложений, что были сделаны для высокоразмерного пространства, за исключением того, что все распределения Гаусса имеют стандартное отклонение <tex>\frac{1}{\sqrt{2}}</tex> для всех точек.
Если удастся хорошо вложить высокоразмерное пространство в низкоразмерное, должны совпасть распределения совместных вероятностей. То есть <tex>p_{i|j}</tex> должны стать похожими на <tex>q_{i|j}</tex>. В связи с этим SNE пытается уменьшить разницу в распределении вероятностей. Стандартной мерой для измерения различия вероятностей служит дивергенция Кульбака-Лейблера<ref>[https://ru.wikipedia.org/wiki/Расстояние_Кульбака_—_Лейблера Расстояние Кульбака—Лейблера]</ref>. Определяется она так:
Анонимный участник

Навигация