193
правки
Изменения
prod
Для настройки вектора параметров \beta воспользуемся ''принципом максимума правдоподобия'':
:<tex>p(X^l|\beta)=\prod_prod\limits_{i}^lp(x_{i},y_{i}|\beta) \rightarrow max_{\beta}</tex>
Удобнее рассматривать логарифм правдоподобия:
:<tex>L(\beta, X^l)=\ln p(X^l|\beta)=\sum\limits_{i}^l \ln p(x_{i}, y_{i}|\beta) \rightarrow max_{\beta}</tex>
Для настройки вектора коэффициентов $\beta$ по обучающей выборке $X^l$ максимизируют логарифм правдоподобия:
:$L(\beta, X^l) = log_{2}\prod_prod\limits_{i=1}^lp(x_{i}, y_{i}) \rightarrow max_{\beta}$
:$L(\beta, X^l) = \sum\limits_{i=1}^{l}log_{2}\sigma(\langle \beta, x_{i} \rangle y_{i}) + const(\beta) \rightarrow max_{\beta}$