193
правки
Изменения
→Регуляризация в линейной регрессии
В итоге оптимизируемый функционал эмпирического риска выглядит следующим образом:
:$Q(a) = \|F\beta - y\|^2$,
где $F = (ff_{j}(x_{i}))_{l \times n}$ {{---}} матрица объекты-признаки, $y = (y_{i})_{l \times 1}$ {{---}} целевой вектор, $\beta = (\beta_{j})_{n \times 1}$ {{---}} вектор параметров.
Приравняв нулю производную $Q(\beta)$ по параметру $\beta$, получаем:
:$\beta^* = (F^TF)^{-1}F^Ty$