51
правка
Изменения
Нет описания правки
===Обучение модели===
В зависимости от типа вопросазадачи, на который вы ищете ответкоторую требуется решить, можно использовать разные алгоритмы моделирования. Процесс обучения модели машинного обучения состоит из следующих шагов:
* С помощью кросс-валидации необходимо разделить набор данных случайным образом на два набора данных: данные для обучения и данные для тестирования.
* Обучите Обучить модель с помощью тренировочного набора данных. * Проверьте Проверить модель на тестовом наборе данных. * Используйте Использовать ансамбль конкурирующих алгоритмов машинного обучения, а также связанные с ними параметры настройки (перебор [http://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC%D0%B0_%D0%B8_%D0%B5%D1%91_%D0%B2%D1%8B%D0%B1%D0%BE%D1%80 гиперпараметров]), которые определяют ответы на поставленный вопрос по имеющимся данным. * ВыяснитеОпределить, какой алгоритм наиболее точно решает поставленную задачу, сравнивая метрики для все возможных вариантов.
==Развертывание==