Изменения

Перейти к: навигация, поиск

Жизненный цикл модели машинного обучения

56 байт добавлено, 23:00, 24 февраля 2020
Нет описания правки
[[Файл:Жизненный_цикл_модели_машинного_обучения.jpeg|550px|thumb|right| Жизненный цикл модели машинного обучения [https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining#/media/File:CRISP-DM_Process_Diagram.png Источник]]]
'''Жизненный цикл модели машинного обучения''' {{---}} это многоэтапный процесс, в течении которого исследователи, инженеры и разработчики обучают, разрабатывают и обслуживают модель машинного обучения. Разработка модели машинного обучения принципиально отличается от традиционной разработки программного обеспечения и требует своего собственного уникального способа разработки. Модель машинного обучения — это приложение искусственного интеллекта (ИИ), которое дает возможность автоматически учиться и совершенствоваться на основе собственного опыта без явного участия человека. Основная цель модели заключается в том, чтобы компания смогла использовать преимущества алгоритмов искусственного интеллекта и машинного обучения для получения дополнительных конкурентных преимуществ.
==Бизнес-анализ==
На этом этапе необходимо вместе с заказчиком сформулировать проблемы бизнеса, которые будет решать модель. Также, требуется понять, кто участвует в проекте со стороны заказчика, кто выделяет деньги под проект, и кто принимает ключевые решения. Вдобавок необходимо узнать существуют ли готовые решения и, если да, чем они не устраивают заказчика.
Главная задача этого этапа {{---}} понять основные бизнес-переменные, которые будет прогнозировать модель. Такие переменные называются ключевыми показателями модели. После этого необходимо определить какие метрики будут использоваться, чтобы определить успешность проекта. Например, может потребоваться спрогнозировать количество абонентов, которые хотели уйти от своего оператора, но в итоге остались у него. К моменту завершения проекта требуется чтобы модель уменьшила отток абонентов на X%. С помощью этих данных можно составить рекламные предложения для минимизации оттока. Метрики должны быть составлены в соответствии с принципами [https://ru.wikipedia.org/wiki/SMART SMART].
Далее необходимо оценить какие ресурсы потребуются в течении проекта: есть ли у заказчика доступное железо или его необходимо закупать, где и как хранятся данные, будет ли предоставлен доступ в эти системы, нужно ли дополнительно докупать/собирать внешние данные, сможет ли заказчик выделить своих экспертов для консультаций на данный проект.
* Данные качественные, но закономерности в принципе отсутствуют и, в результате, заказчик не заинтересован в полученной модели.
После того, как задача описана на языке бизнеса, необходимо поставить ее в терминах машинного обучения. Особенно нужно узнать ответы на следующие вопросы: Какая [[Оценка качества в задачах классификации и регрессии|метрика]] будет использована для оценки результата модели(например: accuracy, precision, recall, MSE, MAE и т.д.)? Каков критерий успешности модели (например, считаем точность (англ. ''accuracy'') равный 0.8 {{---}} минимально допустимым значением, 0.9 {{---}} оптимальным)?
После необходимо сформировать команду проекта, распределить роли и обязанности между его участниками; создать расширенный поэтапный план проекта, который будет дополняться по мере поступления новой информации. Команда проекта состоит из менеджера, исследователей, разработчиков, аналитиков и тестировщиков.
* [[Модель алгоритма и её выбор]]
* [[Оценка качества в задачах классификации и регрессии]]
 
==Примечания==
<references/>
==Источники информации==
51
правка

Навигация