Изменения

Перейти к: навигация, поиск

Порождающие модели

331 байт добавлено, 19:58, 12 января 2021
м
См. также
С другой стороны, дискриминативная модель (англ. ''discriminative model'')<ref> [https://en.wikipedia.org/wiki/Discriminative_model Discriminative model]</ref> обучает только ''условное'' распределение и может, например, отличить собаку от кошки.
В качестве Примером простейшей порождающей модели можно взять является [[Байесовская классификация#Наивный байесовский классификатор|наивный байесовский классификатор]].
== Классификация задачи ==
Во время обучения входящие последовательности представляют собой звуковые волны от примеров записи голоса. После тренировки можно с помощью сети генерировать синтетические фразы. На каждом шагу семплирования значение вычисляется из вероятностного распределения, посчитанного сетью. Затем это значение возвращается на вход и делается новое предсказание для следующего шага.
В моделях [[Задача генерации объектов|PixelRNN]]<sup>[на 24.02.20 не создан]</sup> и [[Задача генерации объектов|PixelCNN]]<sup>[на 24.02.20 не создан]</sup> строится изображение пиксель за пикселем, слева направо и свер­ху вниз. Каждый пиксель <tex>x_n</tex> порождается из условного распределе­ния <tex>p(x_n \mid x_1, {{...}}, x_{n-1})</tex>
а оно уже моделируется или [[Рекуррентные нейронные сети|рекуррентной сетью]] или [[Сверточные нейронные сети|сверточной]].
Сэмплирование из сложных многомерных распределений делается с помощью МСМС<ref>[https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo Markov chain Monte Carlo(МСМС)]</ref>-методов: попробуем построить мар­ковскую цепь, которая описывает случайное блуждание под графиком плотности распределения.
Если достаточно долго блуждать под графиком плотности <tex>p(x)</tex>, можно будет считать, что полученная точка представляет собой случайную точ­ку, взятую по распределению <tex>p(x)</tex>. Примером такого моделирования глубокой сетью являются [[порождающие стохастические сети]]<supref>[на 24https://arxiv.02org/abs/1503.20 не создан05571 Generative Stochastic Networks]</supref>(англ. ''Generative Stochastic Networks'')
[[Generative Adversarial Nets (GAN)|Порождающие состязательные сети]] {{---}} алгоритм машинного обучения, построенный на комбинации из двух нейронных сетей: генеративная модель <tex>G</tex>, которая строит приближение распределения данных, и дискриминативная модель <tex>D</tex>, оценивающая вероятность, что образец пришел из тренировочных данных, а не сгенерированных моделью <tex>G</tex>. Обучение для модели <tex>G</tex> заключается в максимизации вероятности ошибки дискриминатора <tex>D</tex>.
== См. также ==
*[[Байесовская классификация#Наивный байесовский классификатор|Наивный байесовский классификатор]]
*[[Generative Adversarial Nets (GAN)|Порождающие состязательные сети]]
*[[Автокодировщик]]
*[[Вариационный автокодировщик]]
*[[Генерация изображения по тексту]]
== Примечания ==
89
правок

Навигация