113
правок
Изменения
→Функция ReLU
# Очень быстро и просто считается производная. Для отрицательных значений {{---}} 0, для положительных {{---}} 1.
# Разреженность активации. В сетях с очень большим количеством нейронов использование сигмоидной функции или гиперболического тангенса в качестве активационный функции влечет активацию почти всех нейронов, что может сказаться на производительности обучения модели. Если же использовать ReLU, то количество включаемых нейронов станет меньше, в силу характеристик функции, и сама сеть станет легче.
У данной функции есть один недостаток, называющийся проблемой умирающего ReLU<ref>[https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Potential_problems Dying ReLU problem, Wikipedia]</ref>. Так как часть производной функции равна нулю, то и градиент для нее будет нулевым, а то это значит, что веса не будут изменяться во время спуска и нейронная сеть перестанет обучаться.
Функцию активации ReLU следует использовать, если нет особых требований для выходного значения нейрона, вроде неограниченной области определения. Но если после обучения модели результаты получились не оптимальные, то стоит перейти к другим функция, которые могут дать лучший результат.
==См. также==