Изменения

Перейти к: навигация, поиск

Модель алгоритма и её выбор

Нет изменений в размере, 13:45, 10 марта 2020
Автоматизированный выбор модели в библиотеке auto-sklearn для Python
На рисунке 5 показаны общие компоненты Auto-sklearn. Он состоит из 15 алгоритмов классификации, 14 методов предварительной обработки и 4 методов предварительной обработки данных. Мы параметризовали каждый из них, что привело к пространству, состоящему из 110 гиперпараметров. Большинство из них являются условными гиперпараметрами, которые активны, только если выбран соответствующий компонент. Отметим, что SMAC может обрабатывать эту обусловленность изначально.
[[Файл:model_5.png|700px900px|center|thumb| Рис 5. Структурированное пространство конфигурации. Квадратные прямоугольники обозначают родительские гиперпараметры, прямоугольники с закругленными краями являются листовыми гиперпараметрами. Серые прямоугольники отмечают активные гиперпараметры, которые образуют пример конфигурации и конвейера машинного обучения. Каждый конвейер содержит один препроцессор, классификатор и до трех методов препроцессора данных, а также соответствующие гиперпараметры.]]
== См. также ==
84
правки

Навигация