Изменения

Перейти к: навигация, поиск

PixelRNN и PixelCNN

960 байт добавлено, 22:34, 22 марта 2020
Идея
Т.к. утверждается, что значение текущего пикселя зависит от значений предыдущего, то уместно использовать [[:Рекуррентные_нейронные_сети|RNN]], а точнее [[Долгая краткосрочная память|LSTM]]. В ранних работах уже использовался данный подход, и вычисление скрытого состояния происходило следующим образом: <tex>h_{i,j}=f(h_{i-1,j}, h_{i,j-1}, x_{i,j})</tex>, т.е. для того, чтобы вычислить текущее скрытое состояние, нужно было подсчитать все предыдущие, что занимает достаточно много времени.
Авторы алгоритма модернизировали [[Долгая краткосрочная память|LSTM]] в '''RowLSTM''' и '''Diagonal BiLSTM''' таким образом, чтобы стало возможным распараллеливание вычислений, что в итоге положительно сказывается на времени обучения модели.
=== RowLSTM ===
=== Diagonal BiLSTM ===
[[File:pixel-3.png|350px|thumb|Рисунок 3. Операция сдвига в Diagonal BiLSTM. Параллелизация происходит по диагоналям.]]
В данной версии скрытое состояние считается таким же образом, как и в наивном подходе: <tex>h_{i,j}=f(h_{i-1,j}, h_{i,j-1}, x_{i,j})</tex>, но при этом есть хитрость в самом вычислении. Построчно сдвинем строки вправо на один пиксель относительно предыдущей, а затем вычислим скрытые состояния в каждом столбце, как показано на рисунке 3.
Данная версия позволяет учитывать контекст более качественно, но при этом занимает больше времени, чем RowLSTM.
== Сравнение с GAN ==
== Примеры реализации ==
39
правок

Навигация