39
правок
Изменения
Нет описания правки
[[File:pixel-1.png|450px|thumb|Рисунок 1. Пример использования PixelRNN/PixelCNN сетей]]
'''PixelRNN/PixelCNN''' - алгоритмы машинного обучения, входящие в семейство авторегрессивных моделей. Используются для генерации и дополнения изображений. Алгоритмы были представлены в 2016 году компанией DeepMind <ref name=PixelNet>[https://arxiv.org/abs/1601.06759 Pixel Recurrent Neural Networks]</ref> и являются предшественниками алгоритма WaveNet<ref name=WaveNet>[https://deepmind.com/blog/article/wavenet-generative-model-raw-audio WaveNet: A generative model for raw audio]</ref>, который используется в голосовом помощнике Google.
Основным преимуществом PixelRNN/PixelCNN является уменьшение времени обучения, по сравнению с наивными способами попиксельной генерации изображений.
Пусть дано черно-белое изображение <tex>X</tex> размером <tex>N\times N</tex>. Построчно преобразуем картинку в вектор <tex>V_X = \{x_1, x_2, \dots, x_{N^2} \}</tex>, соединяя конец текущей строки с началом следующей. В таком представлении изображения можно предположить, что значение любого пикселя <tex>x_i\in V_X</tex> может зависеть от значений предыдущих пикселей <tex>x_j, j = 1,2,\dots i-1</tex>.
Тогда значение пикселя <tex>x_i\in V_X</tex> можно выразить через условную вероятность <tex>p(x_i|x_1, x_2, \dots x_{i-1})</tex>, и, используя цепное правило для вероятностей<ref name=ChainRule>[https://en.wikipedia.org/wiki/Chain_rule_(probability) Chain rule (probability)]</ref>, оценка совместного распределения всех пикселей будет записываться в следующем виде: <tex>p(X)=\prod_{i=1}^{N^2}p(x_i|x_1, x_2, \dots x_{i-1})</tex>.
Задача алгоритма - восстановить данное распределение. Учитывая тот факт, что любой пиксель принимает значение <tex>0<=x_i<=255</tex>, необходимо восстановить лишь дискретное распределение.
== Идея ==
Т.к. утверждается, что значение текущего пикселя зависит от значений предыдущего, то уместно использовать [[:Рекуррентные_нейронные_сети|RNN]], а точнее [[Долгая краткосрочная память|LSTM]]. В ранних работах <ref name=SpatialLSTM>[https://arxiv.org/abs/1506.03478 Generative Image Modeling Using Spatial LSTMs]</ref> уже использовался данный подход, и вычисление скрытого состояния происходило следующим образом: <tex>h_{i,j}=f(h_{i-1,j}, h_{i,j-1}, x_{i,j})</tex>, т.е. для того, чтобы вычислить текущее скрытое состояние, нужно было подсчитать все предыдущие, что занимает достаточно много времени.
Авторы алгоритма модернизировали [[Долгая краткосрочная память|LSTM]] в '''RowLSTM''' и '''Diagonal BiLSTM''' таким образом, чтобы стало возможным распараллеливание вычислений, что в итоге положительно сказывается на времени обучения модели.
* [https://github.com/ardapekis/pixel-rnn PixelRNN на Pytorch]
* [https://github.com/shirgur/PixelRNN PixelRNN на Keras]
==Примечания==
<references/>
== Источники информации ==
* [https://towardsdatascience.com/auto-regressive-generative-models-pixelrnn-pixelcnn-32d192911173 Auto-Regressive Generative Models]
* [http://slazebni.cs.illinois.edu/spring17/lec13_advanced.pdf Advanced Generation Methods]
* [https://github.com/tensorflow/magenta/blob/master/magenta/reviews/pixelrnn.md Pixel Recurrent Neural Networks]
* [http://bjlkeng.github.io/posts/pixelcnn/ PixelCNN]
[[Категория: Машинное обучение]]